АЛГЕБРА

         Общие сведения
         Алгебра — один из больших разделов математики (См. Математика), принадлежащий наряду с арифметикой (См. Арифметика) и геометрией (См. Геометрия) к числу старейших ветвей этой науки. Задачи, а также методы А., отличающие её от других отраслей математики, создавались постепенно, начиная с древности. А. возникла под влиянием нужд общественной практики, в результате поисков общих приёмов для решения однотипных арифметических задач. Приёмы эти заключаются обычно в составлении и решении уравнений.
         Задачи решения и исследования уравнений оказали большое влияние на развитие первоначального арифметического понятия числа (См. Число). С введением в науку отрицательных, иррациональных, комплексных чисел общее исследование свойств этих различных числовых систем тоже отошло к А. При этом в А. сформировались характерные для неё буквенные обозначения, позволившие записать свойства действий над числами в сжатой форме, удобной для построения исчисления над буквенными выражениями. Буквенное исчисление тождественных преобразований (См. Тождественное преобразование), давшее возможность преобразовывать по определённым правилам (отражающим свойства действий) буквенную запись результата действий, составляет аппарат классической А. Тем самым А. отграничилась от арифметики: А. изучает, пользуясь буквенными обозначениями, общие свойства числовых систем и общие методы решения задач при помощи уравнений; арифметика занимается приёмами вычислений с конкретно заданными числами, а в своих более высоких областях (см.Чисел теория) более тонкими индивидуальными свойствами чисел. Развитие А., её методов и символики оказало очень большое влияние на развитие более новых областей математики, подготовив, в частности, появление анализа математического (См. Анализ математический). Запись простейших основных понятий анализа, таких, как переменная величина, функция, невозможна без буквенной символики, а в анализе, в частности в дифференциальном и интегральном исчислениях, полностью пользуются аппаратом классической А. Применение аппарата классической А. возможно всюду, где приходится иметь дело с операциями, аналогичными сложению и умножению чисел. Эти операции могут производиться при этом и не над числами, а над объектами самой различной природы. Наиболее известным примером такого расширенного применения алгебраических методов является векторная А. (см. Векторное исчисление). Векторы можно складывать, умножать на числа и множить друг на друга двумя различными способами. Свойства этих операций над векторами во многом похожи на свойства сложения и умножения чисел, но в некоторых отношениях отличны. Например, векторное произведение двух векторов А и В не коммутативно, т. е. вектор С = [А,В] может не равняться вектору D = [В,А], наоборот, в векторном исчислении действует правило: [А,В] = — [В,А].
         Следом за векторной А. возникла А. тензоров (см. Тензорное исчисление), ставших одним из основных вспомогательных средств современной физики. В пределах самой классической А. возникла А. матриц (См. Матрица), а также многие другие алгебраические системы.
         Таким образом, А. в более широком, современном понимании может быть определена как наука о системах объектов той или иной природы, в которых установлены операции, по своим свойствам более или менее сходные со сложением и умножением чисел. Такие операции называются алгебраическими. А. классифицирует системы с заданными на них алгебраическими операциями по их свойствам и изучает различные задачи, естественно возникающие в этих системах, включая и задачу решения и исследования уравнений, которая в новых системах объектов получает новый смысл (решением уравнения может быть вектор, матрица, оператор и т. д.). Этот новый взгляд на А., вполне оформившийся лишь в 20 в., способствовал дальнейшему расширению области применения алгебраических методов, в том числе и за пределами математики, в частности в физике. Вместе с тем он укрепил связи А. с др. отделами математики и усилил влияние А. на их дальнейшее развитие.
         Исторический очерк
         Начальное развитие. Алгебре предшествовала арифметика, как собрание постепенно накопленных практических правил для решения повседневных житейских задач. Эти правила арифметики сводились к сложению, вычитанию, умножению и делению чисел, вначале только целых, а затем — постепенно и в очень медленном развитии — и дробных, Характерное отличие А. от арифметики заключается в том, что в А. вводится неизвестная величина; действия над ней, диктуемые условиями задачи, приводят к уравнению, из которого уже находится сама неизвестная. Намёк на такую трактовку арифметических задач есть уже в древнеегипетском папирусе Ахмеса (1700—2000 до н. э.), где искомая величина называется словом «куча» и обозначается соответствующим знаком — иероглифом (см. Папирусы математические). Древние египтяне решали и гораздо более сложные задачи (например, на арифметическую и геометрическую прогрессии). Как формулировка задачи, так и решение давались в словесной форме и только в виде конкретных численных примеров. И все же за этими примерами чувствуется наличие накопленных общих методов, если не по форме, то по существу равносильных решению уравнений 1-й и иногда 2-й степеней. Имеются и первые математические знаки (например, особый знак для дробей).
         В начале 20 в. были расшифрованы многочисленные математические тексты (клинописи) и другой из древнейших культур — вавилонской (см. Клинописные математические тексты). Это открыло миру высоту математической культуры, существовавшей уже за 4000 лет до наших дней. Вавилоняне с помощью обширных специальных таблиц умели решать разнообразные задачи; некоторые из них равносильны решению квадратных уравнений и даже одного вида уравнения 3-й степени. Среди учёных, разрабатывающих историю математики, возник спор о том, в какой мере математику вавилонян можно считать А. Нельзя, однако, забывать, что древняя математика едина. Разделение произошло гораздо позднее.
         В Древней Греции была отчётливо выделена геометрия. У древнегреческих геометров впервые сознательно поставлено исследование, каждый шаг которого оправдан логическим доказательством. Мощь этого метода так велика, что и чисто арифметические или алгебраические вопросы переводились на язык геометрии: величины трактовались как длины, произведение двух величин — как площадь прямоугольника и т. д. И в современном математическом языке сохранилось, например, название «квадрат» для произведения величины на самоё себя. Характерное для более древних культур единство научных знаний и практических приложений было в древнегреческой математике разорвано: геометрию считали логической дисциплиной, необходимой школой для философского ума, а всякого рода исчисления, т. е. вопросы арифметики и А., идеалистическая философия Платона не считала достойным предметом науки. Несомненно, эти отрасли также продолжали развиваться (на основе вавилонских и египетских традиций), но до нашего времени дошёл только трактат Диофанта Александрийского «Арифметика» (вероятно, 3 в.), в котором он уже довольно свободно оперирует с уравнениями 1-й и 2-й степеней; в зачаточной форме у него можно найти и употребление отрицательных чисел.
         Наследие древнегреческой науки восприняли учёные средневекового Востока — Средней Азии, Месопотамии, Северной Африки. Международным научным языком служил для них арабский язык (подобно тому как для учёных средневекового Запада таким языком был латинский), поэтому этот период в истории математики иногда называют «арабским». В действительности же одним из крупнейших научных центров этого времени (9—15 вв.) была Средняя Азия. Среди многих примеров достаточно назвать деятельность узбекского математика и астронома 9 в., уроженца Хорезма Мухаммеда аль-Хорезми и великого учёного-энциклопедиста Бируни, создание в 15 в. обсерватории Улугбека в Самарканде, Учёные средневекового Востока передали Европе математику греков и индийцев в оригинальной переработке, причём особенно много они занимались именно А. Само слово «алгебра» — арабское (аль-джебр) и является началом названия одного из сочинений Хорезми (аль-джебр означало один из приёмов преобразования уравнений). Со времени Хорезми А. можно рассматривать как отдельную отрасль математики.
         Математики средневекового Востока все действия излагали словами. Дальнейший прогресс А. стал возможным только после появления во всеобщем употреблении удобных символов для обозначения действий (см. Знаки математические). Этот процесс шёл медленно и зигзагами, Выше упоминалось о знаке дроби у древних египтян. У Диофанта буква i (начало слова isos, т. е. равный) применялась как знак равенства, были подобные сокращения и у индийцев (5—7 вв.), но затем эта зарождавшаяся символика снова терялась. Дальнейшее развитие А. принадлежит итальянцам, перенявшим в 12 в. математику средневекового Востока. Леонардо Пизанский (13 в.) — наиболее выдающийся математик этой эпохи, занимавшийся алгебраическими проблемами. Постепенно алгебраические методы проникают в вычислительную практику, в первое время ожесточённо конкурируя с арифметическими. Приспособляясь к практике, итальянские учёные вновь переходят к удобным сокращениям, например вместо слов «плюс» и «минус» стали употреблять латинские буквы p и t с особой чёрточкой сверху. В конце 15 в. в математических сочинениях появляются принятые теперь знаки + и —, причём есть указания, что эти знаки задолго до этого употреблялись в торговой практике для обозначения избытка и недостатка в весе.
         Быстро следует введение и всеобщее признание остальных знаков (степени, корня, скобок и т. д.). К середине 17 в. полностью сложился аппарат символов современной А. — употребление букв для обозначения не только искомого неизвестного, но и всех вообще входящих в задачу величин. До этой реформы, окончательно закрепленной Ф. Виетом (конец 16 в.), в А. и арифметике как бы нет общих правил и доказательств; рассматриваются исключительно численные примеры. Почти невозможно было высказать какие-либо общие суждения. Даже элементарные учебники этого времени очень трудны, т. к. дают десятки частных правил вместо одного общего, Виет первый начал писать свои задачи в общем виде, обозначая неизвестные величины гласными А, Е, I, ..., а известные — согласными В, С, D, .... Эти буквы он соединяет введёнными уже в то время знаками математических операций. Т. о. впервые возникают буквально формулы, столь характерные для современной А. Начиная с Р. Декарта (17 в.) для неизвестных употребляют преимущественно последние буквы алфавита (х, у, z).
         Введение символических обозначений и операций над буквами, заменяющими какие угодно конкретные числа, имело исключительно важное значение. Без этого орудия — языка формул — были бы немыслимы блестящее развитие высшей математики начиная с 17 в., создание математического анализа, математического выражения законов механики и физики и т. д.
         Содержание А. охватывало во время Диофанта уравнения 1-й и 2-й степеней. К уравнениям 2-й степени (т. н. квадратным) древнегреческие математики пришли, по-видимому, геометрическим путём, т. к. задачи, приводящие к этим уравнениям, естественно, возникают при определении площадей и построении окружности по различным данным. Однако в одном, очень существенном отношении решение уравнений у древних математиков отличалось от современного: они не употребляли отрицательных чисел. Поэтому даже уравнение 1-й степени (с точки зрения древних)не всегда имело решение. При рассмотрении уравнений 2-й степени приходилось различать много частных случаев (по знакам коэффициентов). Решающий шаг — применение отрицательных чисел — был сделан индийскими математиками (10 в.), но ученые средневекового Востока не пошли по этому пути. С отрицательными числами свыклись постепенно; этому особенно способствовали коммерческие вычисления, в которых отрицательные числа имеют наглядный смысл убытка, расхода, недостатка и т. д. Окончательно же отрицательные числа были приняты только в 17 в., после того как Декарт воспользовался их наглядным геометрическим представлением для построения аналитической геометрии.
         Возникновение аналитической геометрии (См. Аналитическая геометрия) было вместе с тем и торжеством А. Если раньше, у древних греков, чисто алгебраические задачи облекались в геометрическую форму, то теперь, наоборот, алгебраические средства выражения оказались уже настолько удобными и наглядными, что геометрические задачи переводились на язык алгебраических формул. Подробнее о постепенном расширении области чисел, употребляемых в математике, о введении отрицательных, иррациональных, мнимых чисел см. в ст. Число. Здесь же надо отметить, что необходимость введения всех этих чисел особенно настоятельно ощущалась как раз в А.: так, например, квадратные иррациональности (корни) возникают при решении уравнений 2-й степени. Конечно, уже древнегреческие и среднеазиатские математики не могли пройти мимо извлечения корней и придумали остроумные способы приближенного вычисления их; но взгляд на иррациональность как на число установился значительно позже. Введение же комплексных или «мнимых» чисел относится к следующей эпохе (18 в.).
         Итак, если оставить в стороне мнимые числа, то к 18 в. А. сложилась приблизительно в том объёме, который до наших дней преподаётся в средней школе. Эта А. охватывает действия сложения и умножения, с обратными им действиями вычитания и деления, а также возведение в степень (частный случай умножения) и обратное ему — извлечение корня. Эти действия производились над числами или буквами, которые могли обозначать положительные или отрицательные, рациональные или иррациональные числа. Указанные действия употреблялись в решении задач, по существу сводившихся к уравнениям 1-й и 2-й степеней. Теперь А. в этом объёме владеет каждый образованный человек. Эта «элементарная» А. применяется повседневно в технике, физике и др. областях науки и практики. Но содержание науки А. и её приложений этим далеко не ограничивается. Трудны и медленны были только первые шаги. С 16 в. и особенно с 18 в. начинается быстрое развитие А., а в 20 в. она переживает новый расцвет.
         На русском языке изложение элементарной А. в том виде, как она сложилась к началу 18 в., было впервые дано в знаменитой «Арифметике» Л. Ф. Магницкого (См. Магницкий), вышедшей в 1703.
         Алгебра в 18—19 вв. В конце 17 — начале 18 вв. произошёл величайший перелом в истории математики и естествознания: был создан и быстро распространился анализ бесконечно малых (дифференциальное и интегральное исчисления). Этот перелом был вызван развитием производительных сил, потребностями техники и естествознания того времени и подготовлен он был всем предшествующим развитием А. В частности, буквенные обозначения и действия над ними ещё в 16—17 вв. способствовали зарождению взгляда на математические величины как на переменные, что так характерно для анализа бесконечно малых, где непрерывному изменению одной величины обычно соответствует непрерывное изменение другой — её функции.
         А. и анализ развивались в 17—18 вв. в тесной связи. В А. проникали функциональные представления, в этом направлении её обогатил И. Ньютон. С другой стороны, А. принесла анализу свой богатый набор формул и преобразований, игравших большую роль в начальный период интегрального исчисления и теории дифференциальных уравнений. Крупным событием в А. этого периода было появление курса алгебры Л. Эйлера, работавшего тогда в Петербургской академии наук. Этот курс вышел сначала на русском языке (1768—69), а затем неоднократно издавался на иностранных языках. Отличие А. от анализа в 18—19 вв. характеризуется тем, что А. имеет своим основным предметом прерывное, конечное. Эту особенность А. подчеркнул в 1-й половине 19 в. Н. И. Лобачевский, назвавший свою книгу «Алгебра, или Вычисление конечных» (1834). А. занимается основными операциями (сложение и умножение), производимыми конечное число раз.
         Простейшим результатом умножения является одночлен, например 5a3bx2y. Сумма конечного числа таких одночленов (с целыми степенями) называется Многочленом. Если обратить внимание на одну из входящих в многочлен букв, например x, то можно придать ему вид: a0xn + a1xn-1 + ... + an, где коэффициенты ao, a1, ....,an уже не зависят от х. Это — многочлен n-й степени (другое наименование — полином, целая рациональная функция). А. 18—19 вв. и есть прежде всего А. многочленов.
         Объём А., т. о., оказывается значительно уже, чем объём анализа, но зато простейшие операции и объекты, составляющие предмет А., изучаются с большей глубиной и подробностью; и именно потому, что они простейшие, их изучение имеет фундаментальное значение для математики в целом. Вместе с тем А. и анализ продолжают иметь много точек соприкосновения, и разграничение между ними не является жёстким. Так, например, анализ перенял от А. её символику, без которой он не мог бы и возникнуть. Во многих случаях изучение многочленов, как более простых функций, пролагало пути для общей теории функций. Наконец, через всю дальнейшую историю математики проходит тенденция сводить изучение более сложных функций к многочленам или рядам многочленов: простейший пример — Тейлора ряд. С другой стороны, А. нередко пользуется идеей непрерывности, а представление о бесконечном числе объектов стало господствующим в А. последнего времени, но уже в новом, специфическом виде (см. ниже — Современное состояние алгебры).
         Если приравнять многочлен нулю (или вообще какому-либо определённому числу), мы получим алгебраическое уравнение. Исторически первой задачей А. было решение таких уравнений, т. е. нахождение их корней — тех значений неизвестной величины х, при которых многочлен равен нулю. С древних времён известно решение квадратного уравнения х2 + px + q =0 в виде формулы:
         АЛГЕБРА фото №1
         Алгебраическое решение уравнения 3-й и 4-й степеней было найдено в 16 в. Для уравнения вида x3+ px + q = 0 (к которому можно привести всякое уравнение 3-й степени) оно даётся формулой:
         АЛГЕБРА фото №2
         Эта формула называется формулой Кардано, хотя вопрос о том, была ли она найдена самим Дж. Кардано или же заимствована им у других математиков, нельзя считать вполне решенным. Метод решения алгебраических уравнений 4-й степени указал Л. Феррари. После этого начались настойчивые поиски формул, которые решали бы уравнения и высших степеней подобным образом, т. с. сводили бы решение к извлечениям корней («решение в радикалах»). Эти поиски продолжались около трёх столетий, и лишь в начале 19 в. Н. Абель и Э. Галуа доказали, что уравнения степеней выше 4-й в общем случае в радикалах не решаются: оказалось, что существуют неразрешимые в радикалах уравнения n-й степени для любого n, большего или равного 5. Таково, например, уравнение x5 - 4x - 2 = 0. Это открытие имело большое значение, т. к. оказалось, что корни алгебраических уравнений — предмет гораздо более сложный, чем радикалы. Галуа не ограничился этим, так сказать, отрицательным результатом, а положил начало более глубокой теории уравнений, связав с каждым уравнением группу (См. Группа) подстановок его корней. Решение уравнения в радикалах равносильно сведению первоначального уравнения к цепи уравнений вида: ym = а, которое и выражает собой, что
         АЛГЕБРА фото №3
         Сведение к таким уравнениям оказалось в общем случае невозможным, но возник вопрос: к цепи каких более простых уравнений можно свести решение уравнения заданного? Например, через корни каких уравнений корни заданного уравнения выражаются рационально, т. е. при помощи четырёх действий — сложения, вычитания, умножения и деления. В таком более широком понимании Галуа теория продолжает развиваться вплоть до нашего времени.
         С чисто практической стороны для вычисления корней уравнения по заданным коэффициентам не было особой необходимости в общих формулах решения для уравнений высших степеней, т. к. уже для уравнений 3-й и 4-й степеней такие формулы практически мало полезны. Численное решение уравнений пошло иным путём, путём приближённого вычисления, тем более уместным, что на практике (например, в астрономии и технике) и сами коэффициенты обычно являются результатом измерений, т. е. известны лишь приближённо, с той или иной точностью.
         Приближённое вычисление корней алгебраических уравнений является важной задачей вычислительной математики, и к настоящему времени разработано огромное число приёмов её решения, в частности с использованием современной вычислительной техники. Но математика состоит не только из описания способов вычисления. Не менее важна — даже для приложений — другая сторона математики: уметь чисто теоретическим путём, без вычислений, дать ответ на поставленные вопросы. В области теории алгебраических уравнений таким является вопрос о числе корней и их характере. Ответ зависит от того, какие числа мы рассматриваем. Если допустить положительные и отрицательные числа, то уравнение 1-й степени всегда имеет решение и притом только одно. Но уже квадратное уравнение может и не иметь решений среди т. н. действительных чисел; например, уравнение x2+ 2 = 0 не может быть удовлетворено ни при каком положительном или отрицательном х, т. к. слева всегда окажется положительное число, а не нуль. Представление решения в виде
         АЛГЕБРА фото №4
         не имеет смысла, пока не будет разъяснено, что такое квадратный корень из отрицательного числа. Именно такого рода задачи и натолкнули математиков на т. н. мнимые числа. Ещё раньше отдельные смелые исследователи ими пользовались, но окончательно они были введены в науку только в 19 в. Эти числа оказались важнейшим орудием не только в А., но и почти во всех разделах математики и её приложений. По мере того как привыкали к мнимым числам, они теряли всякую таинственность и «мнимость», почему теперь их и называют чаще всего не мнимыми, а комплексными числами (См. Комплексные числа).
         Если допускать и комплексные числа, то оказывается, что любое уравнение n-й степени имеет корни, причём это верно и для уравнений с любыми комплексными коэффициентами. Эта важная теорема, носящая название основной теоремы А., была впервые высказана в 17 в. французским математиком А. Жираром, но первое строгое доказательство её было дано в самом конце 18 в. К. Гауссом, с тех пор были опубликованы десятки различных доказательств. Все эти доказательства должны были, в той или иной форме, прибегнуть к непрерывности; т. о., доказательство основной теоремы А. само выходило за пределы А., демонстрируя лишний раз неразрывность математической науки в целом.
         Если xi один из корней алгебраического уравнения
         a0xn + a1xn-1 + ... + an = 0,
         то легко доказать, что многочлен, стоящий в левой части уравнения, делится без остатка на х — xi. Из основной теоремы А. легко выводится, что всякий многочлен n-й степени распадается на n таких множителей 1-й степени, т. е. тождественно:
         a0xn + a1xn-1 + ... +an = a0(x-x1)(x-x2) ... (x-xn),
        причём многочлен допускает лишь одно единственное разложение на множители такого вида.
         Таким образом, уравнение n-й степени имеет n «корней». В частных случаях может оказаться, что некоторые из множителей равны, т. е. некоторые корни повторяются несколько раз (кратные корни); следовательно, число различных корней может быть и меньше n. Часто не так важно вычислить корни, как разобраться в том, каков характер этих корней. Как пример приведём найденное еще Декартом «правило знаков»: уравнение имеет не больше положительных корней, чем число перемен знака в ряду его коэффициентов (а если меньше, то на чётное число). Например, в рассмотренном выше уравнении x5 - 4x - 2 = 0 одна перемена знака (первый коэффициент — положительный, остальные — отрицательные). Значит, не решая уравнения, можно утверждать, что оно имеет один и только один положительный корень. Общий вопрос о числе действительных корней в заданных пределах решается Штурма правилом. Очень важно, что y уравнения с действительными коэффициентами комплексные корни могут являться только парами: наряду с корнем а + bi корнем того же уравнения всегда будет и a - bi. Приложения ставят иногда и более сложные задачи этого рода; так, в механике доказывается, что движение устойчиво, если некоторое алгебраическое уравнение имеет только такие корни (хотя бы и комплексные), у которых действительная часть отрицательна, и это заставило искать условия, при которых корни уравнения обладают этим свойством (см. Рауса - Гурвица проблема).
         Многие теоретические и практические вопросы приводят не к одному уравнению, а к целой системе уравнений с несколькими неизвестными. Особенно важен случай системы линейных уравнений, т. е. системы т уравнений 1-й степени с n неизвестными:
         a11x1+...+a1nxn = b1,
         a21x1+...+a2nxn = b2,
         ...............................
         am1x1+...+amnxn = bm.
         Здесь x1..., xn неизвестные, а коэффициенты записаны так, что значки при них указывают на номер уравнения и номер неизвестного. Значение систем уравнений 1-й степени определяется не только тем, что они — простейшие. На практике (например, для отыскания поправок в астрономических вычислениях, при оценке погрешности в приближённых вычислениях н т. д.) часто имеют дело с заведомо малыми величинами, старшими степенями которых можно пренебречь (ввиду их чрезвычайной малости), так что уравнения с такими величинами сводятся в первом приближении к линейным. Не менее важно, что решение систем линейных уравнений составляет существенную часть при численном решении разнообразных прикладных задач. Ещё Г. Лейбниц (1700) обратил внимание на то, что при изучении систем линейных уравнений наиболее существенной является таблица, состоящая из коэффициентов aik и показал, как из этих коэффициентов (в случае m = n) строить т. н. определители (См. Определитель), при помощи которых исследуются системы линейных уравнений. Впоследствии такие таблицы, или матрицы (См. Матрица), стали предметом самостоятельного изучения, т. к. обнаружилось, что их роль не исчерпывается приложениями к теории систем линейных уравнений. Теория систем линейных уравнений и теория матриц в настоящее время стали частями важной отрасли науки — линейной алгебры (См. Линейная алгебра).
         (По материалам статьи А.Г. Куроша и О. Ю. Шмидта из 2-го изд. БСЭ).
         Современное состояние алгебры
         Сфера приложений математики расширяется с течением времени, и темп этого расширения возрастает. Если в 18 в. математика стала основой механики и астрономии, то уже в 19 в. она стала необходимой для различных областей физики, а ныне математические методы проникают даже в такие, казалось бы далекие от математики области знания, как биология, лингвистика, социология и т.д. Каждая новая область приложений влечёт создание новых глав внутри самой математики. Эта тенденция привела к возникновению значительного числа отдельных математических дисциплин, различающихся по областям исследования (теория функций комплексного переменного, теория вероятностей, теория уравнений математической физики и т. д.; более новые — теория информации, теория автоматического управления и т. д.). Несмотря на такую дифференциацию, математика остаётся единой наукой. Это единство сохраняется благодаря развитию и совершенствованию ряда общих, объединяющих идей и точек зрения. Тенденция к объединению лежит в существе математики как науки, пользующейся методом абстракции и, кроме того, часто стимулируется тем, что при исследовании задач, возникающих в различных областях знания, приходится пользоваться одним и тем же математическим аппаратом.
         Современная А., понимаемая как учение об операциях над любыми математическими объектами, является одним из разделов математики, формирующих общие понятия и методы для всей математики. Эту роль А. разделяет с топологией (См. Топология), в которой изучаются наиболее общие свойства непрерывных протяжённостей. А. и топология оказались, несмотря на различие объектов исследования, настолько связанными, что между ними трудно провести чёткую границу. Для современной А. характерно то, что в центре внимания оказываются свойства операций, а не объектов, над которыми производятся эти операции. Попытаемся объяснить на простом примере, как это происходит. Всем известна формула (a+ b)2= а2 + 2аb + b2. Её выводом является цепочка равенств: (а + b)2= (a + b)(а + b) = (a + b)a + (а + b) b = (a2 + ba) + (ab + b2) = a2 + (ba + ab)+ b2 = a2 + 2ab + b2. Для обоснования мы дважды пользуемся законом дистрибутивности (См. Дистрибутивность):. с(а + b) = ca + cb (роль с играет а + b) и (a + b) с = ac + bc (роль с играют а и b), закон ассоциативности (См. Ассоциативность) при сложении позволяет перегруппировать слагаемые, наконец используется закон коммутативности (См. Коммутативность): ba = ab. Что представляют собой объекты, закодированные буквами а и b, остаётся безразличным; важно, чтобы они принадлежали системе объектов, в которой определены две операции — сложение и умножение, удовлетворяющие перечисленным требованиям, касающимся свойств операций, а не объектов. Поэтому формула останется верной, если а и b обозначают Векторы на плоскости или в пространстве, сложение принимается сперва как векторное сложение, потом как сложение чисел, умножение — как скалярное умножение векторов. Вместо а и b можно подставить коммутирующие матрицы (т. е. такие, что ab = ba, что для матриц может не выполняться), операторы дифференцирования по двум независимым переменным и т. д.
         Свойства операций над математическими объектами в разных ситуациях иногда оказываются совершенно различными, иногда одинаковыми, несмотря на различие объектов. Отвлекаясь от природы объектов, но фиксируя определённые свойства операций над ними, мы приходим к понятию множества, наделённого алгебраической структурой, или алгебраической системы. Потребности развития науки вызвали к жизни целый ряд содержательных алгебраических систем: группы (См. Группа), линейные пространства (См. Линейное пространство), поля (См. Поле), кольца (См. Кольцо) и т.д. Предметом современной А. в основном является исследование сложившихся алгебраических систем, а также исследование свойств алгебраических систем вообще, на основе ещё более общих понятий (Q-алгебры, модели). Кроме этого направления, носящего название общей А., изучаются применения алгебраических методов к др. разделам математики за её пределами (топология, функциональный анализ, теория чисел, алгебраическая геометрия, вычислительная математика, теоретическая физика, кристаллография и т. д.).
         Наиболее важными алгебраическими системами с одной операцией являются группы. Операция в группе ассоциативна [т. е. верно (a * b) * с = а * (b * с) при любых а, b, с из группы; звёздочкой * обозначена операция, которая в разных ситуациях может иметь разные названия] и однозначно обратима, т.е. для любых а и b из группы найдутся единственные х, у, такие, что а * х = b, у * а = b. Примерами групп могут служить: совокупность всех целых чисел относительно сложения, совокупность всех рациональных (целых и дробных) положительных чисел относительно умножения. В этих примерах операция (сложение в первом, умножение во втором) перестановочна. Такие группы называют абелевыми. Совокупности движений, совмещающих данную фигуру или тело с собой, образуют группу, если в качестве операции взять последовательное осуществление двух движений. Такие группы (группы симметрии фигуры) могут быть неабелевыми. Движения, совмещающие с собой атомную решётку кристалла, образуют т. н. федоровские группы, играющие основную роль в кристаллографии и через нее в физике твёрдого тела. Группы могут быть конечными (группы симметрии куба) и бесконечными (группы целых чисел по сложению), дискретными (тот же пример) и непрерывными (группа вращений сферы). Теория групп стала разветвленной, богатой содержанием математической теорией, имеющей обширную область приложений. Не менее богатой приложениями является линейная А., изучающая линейные пространства. Под этим названием понимаются алгебраические системы с двумя операциями — сложением и умножением на числа (действительные или комплексные). Относительно сложения объекты (называемые векторами) образуют абелеву группу, операция умножения удовлетворяет естественным требованиям:
         а (х + у) = ax + ау, (а + b) х = ax + bx, 1․x = х, a(bx) = ab(x);
        здесь а и b обозначают числа, х и у — векторы. Множества векторов (в обычном понимании) на плоскости и в пространстве образуют линейные пространства в смысле данного определения. Однако задачи, стоящие перед математикой, заставляют рассматривать многомерные и даже бесконечномерные линейные пространства. Последние (их элементами чаще всего являются функции) составляют предмет изучения функционального анализа (См. Функциональный анализ). Идеи и методы линейной А. применяются в большинстве разделов математики, начиная с аналитической геометрии и теории систем линейных уравнений. Теория матриц и определителей составляет вычислительный аппарат линейной А.
         О других алгебраических системах, указанных выше, см. соответствующие статьи и литературу при них.
         Д. К.Фаддеев.
        
         Лит.: История алгебры. Выгодский М. Я., Арифметика и алгебра в древнем мире, 2 изд., М., 1967; Юшкевич А. П., История математики в средние века, М., 1961; Вилейтнер Г., История математики от Декарта до середины XIX столетия, пер. с нем., 2 изд., М., 1966.
         Классики науки. Декарт P., Геометрия, пер. с латин., М. — Л., 1938; Ньютон И., Всеобщая арифметика, или книга об арифметических синтезе и анализе, пер. с лат., М., 1948; Эйлер Л., Универсальная арифметика, пер. с нем., т. 1 — 2, СПБ. 1768 — 69; Лобачевский Н. И., Полное собрание сочинений, т. 4 — Сочинения по алгебре, М. — Л., 1948: Галуа Э., Сочинения, пер. с франц., М. — Л., 1936.
         Университетские курсы. Курош А. Г., Курс высшей алгебры, 9 изд., М., 1968: Гельфанд И. М., Лекции по линейной алгебре, 3 изд., М. , 1966: Мальцев А. И., Основы линейной алгебры, М. — Л., 1948.
         Монографии по общим вопросам алгебры. Ван-дер-Варден Б. Л., Современная алгебра, пер. с нем., 2 изд., ч. 1 — 2, М. — Л., 1947; Бурбаки Н., Алгебра, пер. с франц., [гл. 1 — 9], М., 1962 — 66; Курош А. Г., Лекции по общей алгебре, М., 1962.
         Монографии по специальным разделам алгебры. Шмидт О., Абстрактная теория групп, 2 изд., М. — Л., 1933; Курош А. Г., Теория групп, 3 изд., М., 1967; Понтрягин Л. С., Непрерывные группы, 2 изд., М., 1954; Чеботарев Н. Г., Основы теории Галуа, ч. 1 — 2, М. — Л., 1934 — 37; Джекобсон Н., Теория колец, пер. с англ., М., 1947.

Смотреть больше слов в «Большой Советской энциклопедии»

АЛГЕБРА ЛОГИКИ →← АЛГАРВИ

Синонимы слова "АЛГЕБРА":

Смотреть что такое АЛГЕБРА в других словарях:

АЛГЕБРА

Алгебра вместе с арифметикой есть наука о числах и через посредство чисел — о величинах вообще. Не занимаясь изучением свойств каких-нибудь определенны... смотреть

АЛГЕБРА

АЛГЕБРА, -ы, ж. Раздел математики, изучающий такие качества величин,к-рые вытекают из отношений между величинами и не зависят от их природы. IIприл. алгебраический, -ая,-ое.... смотреть

АЛГЕБРА

алгебра ж. 1) Раздел математики, изучающий свойства переменных числовых величин и общих методов решения задач при помощи уравнений. 2) Учебный предмет, содержащий основы данного раздела математики. 3) разг. Учебник, излагающий содержание данного учебного предмета.<br><br><br>... смотреть

АЛГЕБРА

алгебра ж.algebra

АЛГЕБРА

алгебра сущ., кол-во синонимов: 3 • алмукабала (1) • логистика (9) • математика (29) Словарь синонимов ASIS.В.Н. Тришин.2013. . Синонимы: алмукабала, логистика, математика... смотреть

АЛГЕБРА

Алгебра — А. вместе с арифметикой есть наука о числах и через посредство чисел — о величинах вообще. Не занимаясь изучением свойств каких-нибудь определенных, конкретных величин, обе эти науки исследуют свойства отвлеченных величин как таковых, независимо от того, к каким конкретным приложениям они способны. Различие между арифметикой и А. состоят в том, что первая наука исследует свойства данных, определенных величин, между тем как А. занимается изучением общих величин, значение которых может быть произвольное, а следовательно, А. изучает только те свойства величин, которые общи всем величинам независимо от их значений. Таким образом, А. есть обобщенная арифметика. Это подало повод Ньютону назвать свой трактат об А. "Общею арифметикой". Гамильтон, полагая, что, подобно тому, как геометрия изучает свойства пространства, А. изучает свойства времени, назвал А. "Наукою чистого времени" — название, которое Деморган предлагал изменить в "Исчисление последовательности". Однако такие определения не выражают ни существенных свойств А., ни исторического ее развития. А. можно определить как "науку о количественных соотношениях". В настоящее время отчасти из педагогических соображений, отчасти вследствие исторического развития этой науки, А. делят на <i>низшую</i> и <i>высшую</i>, причем в последнее время под названием новой А. развилось учение о инвариантах преобразований алгебраических форм. <i> История А.</i> Происхождение самого слова А. не вполне выяснено. По мнению большинства исследователей этого вопроса, слово А. происходит от арабских слов эль-джабер-эль-мокабела, т. е. учение о перестановках, отношениях и решениях, но некоторые авторы производят А. от имени математика Гебера, самое существование которого, однако, подвержено сомнению. Первое дошедшее до нас сочинение, содержащее исследование алгебраических вопросов, есть трактат Диофанта, жившего в середине IV века. В этом трактате мы встречаем, например, правило знаков (минус на минус дает плюс), исследование степеней чисел и решение множества неопределенных вопросов, которые в настоящее время относятся к теории чисел. Из 13 книг, составлявших полное сочинение Диофанта, до нас дошло только 6, в которых решаются уже довольно трудные алгебраические задачи. Нам не известно о каких бы то ни было иных сочинениях об А. в древности, кроме утерянного сочинения знаменитой дочери Теона, Гипатии. В Европе А. снова появляется только в эпоху Возрождения и именно от арабов. Каким образом арабы дошли до тех истин, которые мы находим в их сочинениях, дошедших до нас в большом количестве, — неизвестно. Они могли быть знакомы с трактатами греков или, как думают некоторые, получить свои знания из Индии. Сами арабы приписывали изобретение А. Магоммеду-бен-Муза, жившему около середины IХ-го века, в царствование халифа Аль-Мамуна. Во всяком случае, греческие авторы были известны арабам, которые собирали древние сочинения по всем отраслям наук. Магоммед-Абульвефа перевел и комментировал сочинения Диофанта и других предшествовавших ему математиков (в Х веке). Но ни он, ни другие арабские математики не внесли много нового, своего в А. Они изучали ее, но не совершенствовали. Первым сочинением, появившимся в Европе после продолжительного пробела со времен Диофанта, считается трактат итальянского купца Леонардо, который, путешествуя по своим коммерческим делам на Востоке, ознакомился там с индийскими (ныне называемыми арабскими) цифрами и с арифметикой и А. арабов. По возвращении своем в Италию он написал сочинение, охватывающее одновременно арифметику и А. и отчасти геометрию. Однако сочинение это не имело большого значения в истории науки, ибо осталось малоизвестным и было открыто вновь только в середине прошлого столетия в одной флорентийской библиотеке. Между тем сочинения арабов стали проникать в Европу и переводиться на европейские языки. Известно, например, что старейшее арабское сочинение об А. Магоммеда бен-Музы было переведено на итальянский язык, но перевод этот не сохранился до нашего времени. Первый печатный трактат об А. есть "Summa de Arithmetica, Geometria, Proportioni et Proportionalita", написанное итальянцем Лукас де Бурго. Первое издание его вышло в 1494 г. и второе в 1523 г. Оно указывает нам, в каком состоянии находилась А. в начале XVI века в Европе. Здесь нельзя видеть больших успехов в сравнении с тем, что уже было известно арабам или Диофанту. Кроме решения отдельных частных вопросов высшей арифметики, только уравнение первой и второй степени решаются автором, и притом вследствие отсутствия символического обозначения все задачи и способы их решения приходится излагать словами, чрезвычайно пространно. Наконец, нет общих решений даже квадратного уравнения, а отдельные случаи рассматриваются отдельно, и для каждого случая выводится особый метод решения, так что самая существенная черта современной А. — общность даваемых ею решений — еще совершенно отсутствует в начале XVI века. В 1505 году Сципион Феррео впервые решил один частный случай кубического уравнения. Это решение, однако, не было им опубликовано, но было сообщено одному ученику — Флоридо. Последний, находясь в 1535 году в Венеции, вызвал на состязание уже известного в то время математика Тарталья из Брешии и предложил ему несколько вопросов, для разрешения которых нужно было уметь решать уравнение третьей степени. Но Тарталья уже нашел раньше сам решение таких уравнений и, мало того, не только одного того частного случая, который был решен Феррео, но в двух других частных случаев. Тарталья принял вызов и сам предложил Флоридо также свои задачи. Результатом состязания было полное поражение Флоридо. Тарталья решил предложенные ему задачи в продолжение двух часов, между тем как Флоридо не мог решить ни одной задачи, предложенной ему его противником (число предложенных с обеих сторон задач было 30). Тарталья продолжал, подобно Феррео, скрывать свое открытие, которое очень интересовало Кардана, профессора математики и физики в Милане. Последний приготовлял к печати обширное сочинение об арифметике, алгебре и геометрии, в котором он хотел дать также решение уравнений 3-й степени. Но Тарталья отказывался сообщить ему о своем способе. Только когда Кардан поклялся над Евангелием и дал честное слово дворянина, что он не откроет способа Тартальи для решения уравнений и запишет его в виде непонятной анаграммы, Тарталья согласился после долгих колебаний раскрыть свою тайну любопытному математику и показал ему правила решений кубических уравнений, изложенные в стихах, довольно туманно. Остроумный Кардан не только понял эти правила в туманном изложении Тартальи, но и нашел доказательства для них. Невзирая, однако, на данное им обещание, он опубликовал способ Тартальи, и способ этот известен до сих пор под именем "правила Кардана". Вскоре было открыто и решение уравнений четвертой степени. Один итальянский математик предложил задачу, для решения которой известные до той поры правила были недостаточны, а требовалось умение решать биквадратные уравнения. Большинство математиков считало эту задачу нерешимою. Но Кардан предложил ее своему ученику Луиджи Феррари, который не только решил задачу, но и нашел способ решать уравнения четвертой степени вообще, сводя их к уравнениям третьей степени. В сочинении Тартальи, напечатанном в 1546 году, мы также находим изложение способа решать не только уравнение первой и второй степени, но и кубические уравнения, причем рассказывается инцидент между автором и Карданом, описанный выше. Сочинение Бомбелли, вышедшее в 1572 г., интересно в том отношении, что рассматривает так называемый неприводимый случай кубического уравнения, который приводил в смущение Кардана, не могшего решить его посредством своего правила, а также указывает на связь этого случая с классическою задачей о трисекции угла. В Германии первое сочинение об А. принадлежит Христиану Рудольфу из Иауера и появилось впервые в 1524 г. а затем вновь издано Стифелем, или Стифелиусом, в 1571 г. Сам Стифель и Шейбль, или Шейбелиус, независимо от итальянских математиков разработали некоторые алгебраические вопросы, и первому принадлежит введение знаков +, — и √ для сокращения письма. В Англии первый трактат об А. принадлежит Роберту Рекорду, преподавателю математики и медицины в Кембридже. Его сочинение об А. называется "The Whetstone of Wit". Здесь впервые вводится знак равенства (=). Во Франции в 1558 году появилось первое сочинение об А., принадлежащее Пелетариусу; в Голландии Стевин в 1585 г. не только изложил исследования, известные уже до него, но и ввел некоторые усовершенствования в А. Громадные успехи сделала А. после сочинений Виета, который первый рассматривал уравнение всех степеней и показал способы для приблизительного нахождения корней каких бы то ни было алгебраических уравнений. Он же первый означал величины, входящие в уравнение буквами, и тем придал А. ту общность, которая составляет характеристическую особенность алгебраических исследований нового времени. Он же подошел весьма близко к открытию формулы бинома, найденной впоследствии Ньютоном, и, наконец, в его сочинениях можно даже встретить разложение отношения стороны квадрата, вписанного в круг, к дуге круга, выраженное в виде бесконечного произведения. Фламандец Альбер Жирар или Жерар, трактат которого об А. появился в 1629 г., первый ввел понятие мнимых величин в науку. Англичанин Герриот показал, что всякое уравнение может быть рассматриваемо как произведение некоторого числа множителей первого порядка, и ввел в употребление знаки &gt; и &lt;. Его труды были опубликованы в 1631 г. Варнером. После этих сравнительно незначительных успехов А. вдруг движется быстрыми шагами вперед благодаря работам Декарта, Фермата, Валлиса и в особенности Ньютона, не говоря уже о множестве математиков менее знаменитых, но все же подвинувших совокупными усилиями А. в течение сравнительно короткого времени на значительную степень выше их предшественников и придавших ей ту форму, которую она сохранила до настоящего времени. Нет возможности в этом кратком очерке обозреть успехи, которым А. обязана названным математикам. Отдельные моменты этого вопроса могут быть прослежены по специальным параграфам под соответствующими рубриками и в специальных сочинениях, цитированных в конце этой статьи. Мы вкратце только упомянем о главных пунктах дальнейшего быстрого совершенствования А., шедшего шаг за шагом за совершенствованием иных отраслей математики вообще. С этого времени также А. входит в более тесную связь с геометрией после открытия Декартом т. наз. аналитической геометрии, а также с анализом бесконечно малых, изобретенным Ньютоном и Лейбницем. В XVIII столетии классические труды Эйлера и Лагранжа, изложенные в "Novi Commentarii" первого и в "Trait é de la résolution des é quations" второго, доведя A. до высокой степени совершенства, а в настоящем столетии работы Гаусса, Абеля, Фурье, Галуа, Коши и в новейшее время Кейли, Сильвестера, Кронекера, Эрмита и др. создали новые точки зрения на важнейшие алгебраические вопросы и придали А. высокую степень изящества и простоты. (См. для дополнения статьи Уравнения, Определители, Инварианты, Математика и др.). <i> Содержание А.</i> Низшая А. Сюда включают обыкновенно следующие отделы: теорию простейших арифметических операций над алгебраическими величинами, решение уравнений первой и второй степени, теорию степеней и корней, теорию логарифмов и, наконец, теорию сочетаний. К высшей А. относят теорию уравнений каких угодно степеней, теорию исключения, теорию симметрических функций корней уравнений, теорию подстановок и, наконец, изложение различных частных способов отделения корней уравнений, определения числа вещественных или мнимых корней данного уравнения с численными коэффициентами и решение по приближению или, когда это возможно, в точности уравнений каких угодно степеней. Наконец, под названием новой А. известна в особенности в Англии теория инвариантов алгебраических форм. Литература А. вообще (по отдельным вопросам см. под соответственными рубриками: <i>Уравнения, Инварианты, Определители,</i> и др.): Древнейшие авторы (до XVIII века): Diophantus, "Arithmeticorum libri sex", около (300); (первое изд. 1575; лучшее 1670); Lucas Paciolus или De Burgo (1494); Rudolff, "Algebra" (1522); Stifelius, "Arithmetica Integra" (1544); Cardanus, "Ars Magna quam vulgo Cossam vocant" (1545); Tartalea (Tartaglia), "Quesiti ed Inventioni, diverse" (1546); Scheubelius, "Algebra Compediosa" (1551); Recorde, "Whetstone of Wit" (1557); Peletarius, "De Occulta parte Numerorum" (1558); Buteo, "De Logistica" (1559); Ramus, "Aritmeticae Libri duo et totidem Algebrae" (1560); Pedro Nuguez (Nonnius), "Libre de Algebra" (1567); Josselin, "De Occulta Parte Mathematicarum" (1576); Bernard Solignac, "Arithmeticae Libri II et Algebrae totidem" (1580); Stevinus, "Arithmetique etc. et aussi l‘Algébre" (1585); Vieta, "Opera Mathematica" (1600); Folinus, "Algebra sive liber de Rebus Occultis" (1619); Bachet, "Diophantus cum commentariis" (1621); Albert Girard, "Invention Nouvelle en Algébre" (1629); Ghetaldus, "De Resolutione et Compositione Mathematica" (1630); Harriot, "Artis Analyticae Proxis" (1631); Oaghtreed, "Clavis Mathematica" (1631); Herigonis, "Cursu Mathematicus" (1634); Cavalerius, "Geometria Indivisibilis Continuarum etc." (1635); Descartes, "Geometria" (1637); Roberval, "De Recognitione Aequationum (1640); De Billy, Nova Geometricae clavis Algebra (1643); Renoldius, Opus Algebraicum" (1644); Wallis, "Arithmetica Infinitarum, Algebra" (1655); Newton (Opera) (1666); Gregory, "Exercitationes Geometrical" (1663); Mercator, "Logarithmotecnia" (1678); Barrow, "Lectiones geometrical" (1669) Prescot, "Nouveaux élements de Mathématique" (1675); Leibniz (Opera) (1677); Fermat (1679); Tschienhausen (1683); Rolle, "Une Mé thode etc." (1690). XVIII и начала XIX века: Abel, Bernoulli, Budan, Clairault, Galois, Gauss, Horer, Lagrange, Landen, Legendre, Lhuillier, Malfatti, De Moivre, Nicole, S‘Gravesande, Simpson, Stirling, Vandermonde. Учебники: Bertrand, De Morgan, Serret, Todhunter. На русском языке: "Элементарная алгебра": Давыдов, Краевич. Высшая А. Сохоцкий (СПб., 1882).<br><br><br>... смотреть

АЛГЕБРА

- часть математики, посвященная изучению алгебраических операций. Исторический очерк. Простейшие алгебраич. операции - арифметич. действия над нат... смотреть

АЛГЕБРА

АЛГЕБРАраздел элементарной математики, в котором арифметические операции производятся над числами, значения которых заранее не заданы. Преимущества алгебраических методов обусловлены использованием достаточно компактных символических систем, что внешне выглядит как самая характерная их черта. Термин "алгебра" применяется также для обозначения более абстрактных областей математики, в которых символы используются сходным образом, но необязательно при этом представляют числа (см. также АЛГЕБРА АБСТРАКТНАЯ; МНОЖЕСТВ ТЕОРИЯ).Для представления чисел можно использовать любые символы, но обычно для этого берут буквы латинского алфавита. Если x и y - два числа, то их сумма обозначается x + y, а разность x - y, т.е. как в арифметике. Так как знак умножения ? легко спутать с буквой x, в алгебре знак ? используется редко; обычно произведение чисел x и y обозначается x?y или просто xy. (Знакомые всем позиционные обозначения, используемые при записи целых чисел и означающие, например, что 23 - это не два умножить на три, а два десятка плюс три единицы, в алгебре не применяются.) Аналогично, если одно из встречающихся в задаче чисел указано явно или заранее известно, например число 2, то сумма двойки и любого не указанного заранее числа x алгебраически записывается в виде 2 + x или x + 2, а произведение - как 2x. Множитель 2 в произведении 2x обычно называют коэффициентом. Частные, как правило, записывают в виде дробей; допустима запись x ??y, но или (из соображений удобства набора) x/y встречается гораздо чаще. Символ = означает "равно", символ ? - "не равно".Например, пусть x - число (если оно существует), такое, что если его удвоить, то оно совпадет с самим собой, увеличенным на три. Чтобы найти x ("неизвестное"), мы можем рассуждать на словах, как это и делали первые алгебраисты до изобретения символических систем, но гораздо эффективнее воспользоваться алгебраическими обозначениями. По условиям задачи, требуется, чтобы2x = x + 3.Такое представление равенства двух чисел называется уравнением. Пользуясь известными из арифметики правилами операций над числами, уравнение можно упростить. Если число x удовлетворяет уравнению, то числа 2x и x + 3 равны. Вычитая по x из каждого числа, мы снова получим равные числа, следовательно, можно записать x = 3, и задача решена (см. также АРИФМЕТИКА; ЧИСЛО). Заметим, что вычитание x из обеих частей уравнения приводит к такому же результату, как если бы мы взяли x из правой части уравнения и перенесли его в левую часть с другим знаком, т.е. как ?x, в результате чего мы получим уравнение2x - x = 3,откуда x = 3.Аналогично, если два числа равны, будут равны также их удвоенные величины и их половины, а в более общем случае будут равны результаты их умножения на одно и то же число. Отсюда следует правило, согласно которому обе части уравнения можно умножать или делить на одно и то же число (кроме нуля). Например, из уравнения 3x = 6 мы заключаем, что x = 2. С другой стороны, если x = 1 и, следовательно, x - 1 = 0, мы не можем делить на x - 1 обе части уравнения x - 1 = 0; если же мы все-таки разделим, то скорее всего получим неверный результат, который можно записать в виде "равенства" 1 = 0.Символы группировки. Огромные возможности алгебраических символов в полной мере раскрываются лишь когда необходимо записать уравнения более сложные, чем те, которые встречались нам до сих пор. В тех случаях, когда требуется изменить порядок выполнения операций, используются символы группировки членов, главным образом круглые скобки (), квадратные скобки и фигурные скобки {}. В некоторых случаях порядок выполнения операций несуществен, например, как в выражении 2 + 3 + 4; не важно, прибавим ли мы сначала 2 к 3, а затем прибавим результат, равный 5, к 4, или сначала прибавим 3 к 4, а затем полученную сумму, равную 7, прибавим к 2. Объясняется это тем, что сложение действительных чисел подчиняется закону ассоциативности. С другой стороны, смысл выражения 12 ? 2 ? 3 совершенно неясен: оно могло бы означать, что 12 следует разделить на 2 (и получить частное, равное 6), а затем полученный результат разделить на 3 и получить 2; или же что 2 следует разделить на 3 и получить частное, равное 2/3, а затем 12 разделить на 2/3 и получить 18. Чтобы исключить столь различные толкования, мы можем записать исходное выражение в виде (12 ? 2) ? 3 в первом случае и как 12 ? (2 ? 3) - во втором. Согласно принятому соглашению, операции, указанные в круглых скобках, выполняются первыми.В некоторых случаях смысл выражения определяет принятое соглашение о порядке выполнения операций, без которого выражение допускало бы различные толкования. Например, принято считать, что 2?3 + 4 означает ?????, т.е. 10, а не 2?7, т.е. 14. Таким образом, если нет операций, заключенных в скобки, то сначала выполняются последовательно умножение и деление, а затем - сложение и вычитание. Если же мы хотим, чтобы сначала была выполнена операция сложения, то необходимо записать 2?(3 + 4) или просто 2(3 + 4). Используя закон дистрибутивности, это выражение можно упростить: 2(3 + 4) = (2?3) + (2??).Если встречаются несколько скобок, круглых, прямоугольных и фигурных, то выполнять действия нужно, начиная с внутренних скобок; например,2{3 + 4}раскрывается последовательно следующим образом:2{3 + 4} = 2{3 + 4} = 2?7 = 14.К числам, представленным символами, следует применять те же правила, которые определяются свойствами чисел. Например,x + 2(3 - x) = x + 2?3 - 2x = 6 - x;здесь мы воспользовались законом дистрибутивности, а затем законами ассоциативности и коммутативности сложения. Аналогично,В этом примере мы помимо законов дистрибутивности, коммутативности и ассоциативности, воспользовались правилом, согласно которому произведение положительного и отрицательного чисел отрицательно, а произведение двух отрицательных чисел положительно.Системы уравнений. В некоторых задачах требуется найти одновременно несколько чисел, для чего необходимо решить несколько уравнений. Предположим, например, что возраст Джона и удвоенный возраст Мэри вместе составляют 32 года, а если бы Джон был вдвое старше, а Мэри на четыре года младше, то им вместе было бы 24 года. Сколько лет Джону и Мэри? Обозначим возрасты Джона и Мэри любыми буквами, например, соответственно j и m. Тогда первое утверждение относительно возрастов можно записать в видеа второе - в видеили после упрощения какКогда два (или больше) числа удовлетворяют двум, как в данном случае, или большему числу уравнений, говорят, что эти числа удовлетворяют системе уравнений. Существуют несколько методов решения систем уравнений. В нашей задаче уравнение (1) (его правую и левую части) можно умножить на 2:Уравнение (2) утверждает, что 2j + m и 28 - одно и то же число; уравнение (3), если оно верно, останется в силе, если мы вычтем это число из его правой и левой частей, а именно: из левой части мы вычтем 2j + m, а из правой - число 28. В результате мы получим3m = 36,откуда m = 12 (т.е. Мэри 12 лет). Используя информацию, содержащуюся в уравнении (1), мы получаем j + 24 = 32 и, следовательно, j = 8 (т.е. Джону 8 лет).Другие методы решения систем уравнений мы продемонстрируем на следующих примерах (каждый из методов пригоден для решения любой из приведенных задач).Предположим, что руководителю предприятия выплачивается 20%-я премия от чистой прибыли, вычисляемой вычитанием из прибыли налогов, но не его премии, и что налоги взимаются в размере 30% от общей прибыли за вычетом причитающейся руководителю премии, но не самих налогов. Предположим, что общая прибыль до вычитания премии и налогов составляет 50 000 долларов. Какова премия и каковы налоги? Задача может показаться неразрешимой, если подходить к ней с позиций арифметики, так как ни премия, ни налоги не могут быть представлены в численном виде, пока мы не узнаем хотя бы одну из этих величин. Однако с помощью алгебраических методов справиться с решением такой задачи не составляет труда. Если обозначить величину премии через b, а размер взимаемых налогов через t, тоb = 0,2(50 000 - t), t = 0,3(50 000 - b).Здесь первое из уравнений утверждает, что b = 10 000 - 0,2t; используя это обстоятельство во втором уравнении, последовательно находим:или после округления до ближайших целых чисел (долларов)t = 12 766$, b = 7447$.Системы линейных уравнений вроде этих можно решать с помощью определителей. В более сложных случаях мы можем воспользоваться различными численными методами их решения. См. также ОПРЕДЕЛИТЕЛЬ.Степени и радикалы. Обозначение x2 (читается "икс в квадрате") используется для сокращенной записи произведения xx (т.е. "икс раз по икс"); например, 32 = 9 и (-1/2)2 = 1/4. Число 2 в этой записи называется показателем степени. Аналогичный смысл имеют более высокие показатели степени: x3 (читается "икс в кубе") означает xxx, а xn (читается "икс в степени n") означает произведение n сомножителей x. Например, 25 = 2?2?2?2?2 = 32. Само число x можно записать как x1 (икс в первой степени), но показатель 1 обычно опускается. Так как 22?23 = 25 и вообще xm?xn = xm+n (в этом нетрудно убедиться, если воспользоваться определением степеней), мы приходим к определениям отрицательных и нулевого показателей степеней: x- n = 1/xn и x0 = 1. Например, 2- 3 = (1/2)3 = 1/8; 20 = 1. (Для нуля отрицательные и нулевая степени не определены.)Равенство xm?xn = xm+n - одно из трех фундаментальных правил действий над степенями, два других правила имеют вид xm?ym = (xy)m и (xm)n = xmn. Например, 23?33 = 63 и (23)4 = 212 = 4096. Повторные показатели следует интерпретировать следующим образом: означает . Таким образом, означает . Это число часто приводят как наибольшее число, которое можно записать с помощью трех цифр.Корнем n-й степени из числа x называется число, n-я степень которого совпадает с x. При n = 2 или n = 3 корни называются соответственно квадратным и кубическим. Например, 3 и ?3 - квадратные корни из 9, так как 32 = 9 и (-3)2 = 9; 2 - кубический корень из 8, т.к. 23 = 8; ?2 - кубический корень из ?8; 1/2 - кубический корень из 1/8. У любого положительного числа существуют два квадратных корня, один положительный и один отрицательный. Положительный квадратный корень из x обозначается , поэтому . (Символ - стилизованная буква латинского алфавита r, первая буква латинского слова "radix" - корень.) Произвольное положительное число имеет n корней n-й степени; если n четно, то оба корня - действительные; если n нечетно, то действительным является один корень. Если x - положительное число, то символ означает положительный корень n-й степени при четном n; если x - положительное или отрицательное число, то означает один из действительных корней n-й степени при нечетном n. Например, , , , , , называются радикалами. Простые радикалы, выражающие иррациональные числа, например , , , и поныне называются несколько устаревшим термином "иррациональности". Следует подчеркнуть, что всегда означает положительный квадратный корень, так что, например, только в том случае, если y - положительное число; если же y отрицательно, то означает положительное число?y .Альтернативные обозначения корней основаны на использовании дробных степеней и предпочтительны с точки зрения удобства типографского набора. Если считать, что дробные показатели степеней должны подчиняться тем же законам, что и целые, то x1/2x1/2 должно означать (x1/2)2 = x1/2?2 = x; по определению мы полагаем . Аналогично, x1/n означает корень n-й степени из x, поэтому, например, 81/3 = 2. Естественно, xp/q означает p-ю степень корня q-й степени из числа x или имеет альтернативный (при положительных x - эквивалентный) смысл корня q-й степени из p-й степени числа x. Например, 82/3 = 22 = 4 или 82/3 = 641/3 = 4; 8-2/3 = 1/4 . Определения дробных и отрицательных степеней положительных чисел выбраны так, чтобы при работе с ними сохранялись правила действий с целыми положительными степенями. Например,Определить степени отрицательных или комплексных чисел так, чтобы и для них выполнялись все без исключения правила действий над степенями, не представляется возможным. См. также ЛОГАРИФМЫ.Тождества. Важную часть алгебры составляют формулы, которые можно использовать для упрощения сложных выражений. Например, справедливо следующее соотношение:(a + b)(c + d) = ac + bc + ad + bd.Такое равенство называется тождеством; под этим понимается, что независимо от того, какие числа были обозначены символами a, b, c, d, результат выполнения операций, указанных в левой части равенства, совпадает с результатом операций, указанных в правой части равенства. Кстати сказать, приведенное выше тождество используется в арифметике при решении, например, таких задач:25?36 = (20 + 5)(30 + 6) = 600 + 150 + 120 + 30;обычная форма записи, принятая при выполнении вычислений, является сокращенной формой этого тождества. Другие тождества, такие какмогут использоваться как для упрощения решений в арифметике, так и для строго алгебраических целей. Например,101?99 = (100 + 1)(100 - 1) = 1002 - 12 = 9999.Первые две из приведенных формул являются частными случаями (с показателем 2) бинома Ньютона (см. также НЬЮТОНА БИНОМ).Эти тождества можно читать и в обратную сторону, т.е. справа налево, для записи алгебраических выражений в виде произведения множителей, например,Такая факторизация (разложение на множители) полезна при решении уравнений.Раскрыв произведение (ax + b)(cx + d), мы получим тождество(ax + b)(cx + d) = acx2 + (bc + ad)x + bd.Довольно часто приходится сталкиваться с задачей представления в виде произведения двух множителей выражений типа x2 - x - 6. Если такое представление с целочисленными коэффициентами возможно, то его можно попытаться найти путем подбора коэффициентов (в рассматриваемом случаеx2 - x - 6 = (x - 3)(x +2)).Многочлены и уравнения. Многочленом называется выражение 2x3 - 5x2 + 6x - 1, в общем виде представляющее собой сумму целочисленных степеней одного и того же числа, взятых с заданными коэффициентами. С помощью десятичной записи целые числа можно представлять в виде многочленов по степеням числа 10, например, 365 = 3?(102) + 6(10) + 5. Если число x в выражении 2x3 - 5x2 + 6x - 1 не задано и может принимать значения из некоторого множества чисел, то оно называется переменной, и формула 2x3 - 5x2 + 6x - 1 определяет некоторую функцию, область определения которой совпадает с тем множеством значений, которые может принимать x. Такая функция называется полиномиальной или для краткости просто полиномом (многочленом); обычно областью определения многочлена принято считать область всех вещественных чисел или множество всех комплексных чисел (см. ФУНКЦИЯ).Степенью многочлена называют высшую степень входящей в него переменной, например, 2x3 - 5x2 + 6x - 1 - многочлен третьей степени. Любое число, отличное от нуля, рассматриваемое как функция (постоянная, или константа), представляет собой многочлен нулевой степени. Многочлены степеней 1, 2, 3, 4 называются соответственно линейными, квадратными, кубическими и биквадратными. Многочлены можно складывать и умножать так же, как числа, за исключением операции переноса единицы в старший разряд. Последнее вполне естественно, т.к. обычный способ записи чисел по существу является их представлением в виде многочлена по степеням числа 10. Например, чтобы найти сумму многочленов 2x3 - 3x2 + 4x + 5 и x2 + 3x - 2, мы записываемчтобы найти произведение тех же многочленов, мы записываемАлгебраическое уравнение (в стандартной форме) - это записанное в алгебраических обозначениях утверждение о том, что некоторая полиномиальная функция обращается в нуль при некотором значении или некоторых значениях переменной (которые требуется найти; например, x2 - 5x + 6 = 0 - алгебраическое уравнение). Уравнение типа 5 - 2x = 6x2 - 3x, приводимое к стандартному алгебраическому уравнению, также называется алгебраическим уравнением. В тех разделах математики, где неалгебраические уравнения (например, ex + 2sin x = 3) не встречаются, вместо слов "алгебраическое уравнение" обычно говорят просто "уравнение".Значения переменной, при которых многочлен обращается в нуль, называются корнями многочлена; они также являются корнями уравнения, получающегося, если многочлен приравнять нулю. Например, многочлен x2 - 5x + 6 имеет корни 2 и 3, т.к. 22 - 5?2 + 6 = 0 и 32 - 5?? + 6 = 0; уравнение x2 - 5x + 6 = 0 также имеет корни 2 и 3. Заметим, однако, что в многочлене x2 - 5x + 6 переменная x означает любое число из области определения функции; в уравнении же x2 - 5x + 6 = 0 неизвестная величина x означает одно из чисел, удовлетворяющих уравнению, т.е. превращающих его в тождество, а именно 2 или 3.Линейное уравнение общего вида можно записать как ax + b = 0, где a(? 0) и b - два заданных числа. Оно имеет решение x = -b/a; таким образом, линейное (степени 1) уравнение имеет ровно один корень.Квадратное уравнение имеет вид ax2 + bx + c = 0. Некоторые простые квадратные уравнения удается решить методом факторизации: если уравнение имеет видx2 - 5x + 6 = 0,то его можно также записать в эквивалентной форме(x - 3)(x - 2) = 0,а последнее выполняется только в том случае, когда x = 3 или x = 2 (т.к. произведение двух чисел равно нулю лишь когда один из сомножителей равен нулю). Следовательно, у интересующего нас уравнения два корня: 2 и 3. Было установлено, что квадратное уравнение обычно имеет два корня, хотя, например, у уравненияx2 - 4x + 4 = 0только один корень. Считается, что в этом случае оба корня уравнения совпадают, так как многочлен, стоящий в левой части уравнения, можно представить в виде двух линейных сомножителейx2 - 4x + 4 = (x - 2)(x - 2).Квадратное уравнение типаx2 + 2x + 4 = 0не имеет действительных корней, т.к. x2 + 2x + 4 = x2 + 2x + 1 + 3 = (x + 1)2 + 3, т.е. значение многочлена x2 + 2x + 4 положительно при любом действительном x; однако у этого уравнения есть, как будет показано ниже, два комплексных корня. Так называемая основная теорема алгебры утверждает, что любой многочлен положительной степени n можно разложить в произведение n линейных сомножителей (возможно, с использованием комплексных чисел), поэтому в общем случае можно сказать, что алгебраическое уравнение степени n имеет n корней (хотя значения некоторых корней могут совпадать).Общий метод решения квадратного уравнения (называемый дополнением до полного квадрата) основан на идее, с помощью которой мы показали, что у уравнения x2 + 2x + 4 = 0 нет действительных корней. В качестве примера мы выберем уравнение, имеющее действительные корни:x2 + 2x - 2 = 0.Запишем это уравнение в видеx2 + 2x = 2и прибавим к правой и левой части по 1:x2 + 2x + 1 = 3.В левой части теперь стоит полный квадрат, поэтому(x + 1)2 = 3.Это означает, что число x + 1 - один из квадратных корней из 3, т.е.откудаОбычно для краткости это записывают так:что следует понимать как альтернативу (x принимает либо одно, либо другое значение), но отнюдь не как утверждение о том, будто x принимает два значения одновременно.Следуя той же самой процедуре, мы можем решить квадратное уравнение в общем виде и получить формулу для его корней. Запишем уравнение в видеax2 + bx + c = 0, где a ? 0,перенесем свободный член в правую часть с противоположным знаком и разделим каждый член уравнения на a:ТогдаЕсли величина b2 - 4ac отлична от нуля, то радикал следует понимать как любой из двух квадратных корней из b2 - 4ac, один из которых - положительный, а другой - отрицательный, поэтому полученная формула дает ровно два корня; если величина b2 - 4ac равна нулю, то x = -b/(2a), и мы говорим, что уравнение имеет два равных корня. Если величина b2 - 4ac положительна, то никаких трудностей с извлечением квадратного корня не возникает. Если же величина b2 - 4ac отрицательна, то нам приходится вводить мнимую единицу i, определяемую как квадратный корень из ?1, и корни уравнения становятся комплексными. Так, если, например, b2 - 4ac = -4, тоСм. также ЧИСЛО.Чтобы продемонстрировать, как действует формула для корней квадратного уравнения в случае, когда b2 - 4ac &lt; 0, рассмотрим уравнение2x2 - 4x + 3 = 0.Здесь a = 2, b = -4, c = 3, и корни равныФормула для корней квадратного уравнения остается в силе и в том случае, когда коэффициенты уравнения - комплексные числа, но приводит к необходимости извлекать квадратный корень из комплексного числа, а поэтому менее удобна, чем в случае действительных коэффициентов.Формулы для корней уравнений третьей и четвертой степеней (кубических и биквадратных уравнений) выглядят гораздо сложнее, а для уравнений пятой и более высоких степеней они существуют лишь в отдельных случаях. Когда же коэффициенты уравнения достаточно сложны, например, выражаются числами со многими значащими цифрами, такие формулы не имеют практического значения, и гораздо эффективнее воспользоваться приближенными методами. См. также УРАВНЕНИЯ.Неравенства. Символы и &lt; означают соответственно "больше, чем" и "меньше, чем"; например, 2 &lt; 4 и -3 -5. Неравенства, содержащие неизвестное число, можно решать, пользуясь методами, похожими на те, которыми решают уравнения. Применимы три правила: (i) из обеих частей неравенства можно вычитать одно и то же число, к обеим частям неравенства можно прибавлять одно и то же число; (ii) обе части неравенства можно умножать на одно и то же положительное число (но не на нуль); (iii) при умножении обеих частей неравенства на одно и то же отрицательное число смысл неравенства изменяется на противоположный (т.е. вместо "больше, чем" неравенство переходит в "меньше, чем" и наоборот). В качестве примера решим неравенство-2x - 7 2 - 5x.Пользуясь правилом (i), заменим это неравенство новым:-7 2 - 3x,или-9 -3x.По правилу (iii) последнее неравенство эквивалентно неравенству9 &lt; 3x,а по правилу (ii) это неравенство, в свою очередь, эквивалентно неравенству3 &lt; x.Таким образом, числа x, удовлетворяющие неравенству -2x - 7 2 - 5x, это в точности те самые числа, которые больше 3. При умножении на множитель, содержащий неизвестную величину, следует иметь в виду, что этот множитель может быть как отрицательным, так и положительным. См. также РЯДЫ; ПРОГРЕССИЯ.... смотреть

АЛГЕБРА

АЛГЕБРА(араб. al djebr - восстановление разрозненных частей). Часть математики, рассматривающая общие величины, обозначая их буквами и знаками.Словарь ... смотреть

АЛГЕБРА

ж.algebra- абелева алгебра- абстрактная алгебра- алгебра Вирасоро- алгебра внутренних симметрий- алгебра Гейзенберга- алгебра генераторов- алгебра Грас... смотреть

АЛГЕБРА

А́ЛГЕБРА, и, ж.Розділ математики, який вивчає загальні властивості величин та дій над ними, незалежно від їх природи.Семикласник Юрко, забувши про зако... смотреть

АЛГЕБРА

algebra* * *а́лгебра ж.algebraаннигиля́торная а́лгебра — annihilator algebraассоциати́вная а́лгебра — associative algebraбу́лева а́лгебра — Boolean ... смотреть

АЛГЕБРА

algebra– алгебра абстрактная– алгебра алгебраическая– алгебра высказываний– алгебра дифференцирований– алгебра замыкания– алгебра картановская– алгебра... смотреть

АЛГЕБРА

АЛГЕБРА -ы ж. algèbre f., нем. Algebra &LT;ср.-лат. algebra. 1380. Лексис. мат. Алгебра же назвася от изобретателя гебер нарицаемаго. Арифм. Магн. 226... смотреть

АЛГЕБРА

⊲ А́ЛГЕ́БРА 1703 (алже- 1738), ы, ж.Ср.-лат. algebra < араб, [al-dżebr], непоср. и через нем. Algebra, фр. algèbre.Мат.Алге́бра же назвася от изобрѣтат... смотреть

АЛГЕБРА

Арабское – al-gabr.Позднелатинское – algebra.Слово «алгебра» широко известно в русском языке уже с начала XVIII в.Изначально использовалось в формах: «... смотреть

АЛГЕБРА

АЛГЕБРА, часть математики, развившаяся в связи с задачей о решении алгебраических уравнений. Слово "алгебра" - арабское (аль-джебр), означает один из приемов преобразования алгебраических уравнений. Решение уравнений 1-й и 2-й степеней известно еще с древности (2-е тысячелетие до нашей эры). В 16 в. итальянскими математиками найдены решения уравнений 3-й и 4-й степеней. К. Гауссом установлено (1799), что всякое алгебраическое уравнение n-й степени имеет n корней (решений), действительных или мнимых. В начале 19 в. Н. Абель и Э. Галуа доказали, что решения уравнений степени выше 4-й, вообще говоря, нельзя выразить через коэффициент уравнения при помощи алгебраических действий. В современной алгебре изучается общая теория совокупностей, в которых определены алгебраические операции, аналогичные по своим свойствам действиям над числами. Такие операции могут выполняться, например, над многочленами, векторами, матрицами и т.д. <br>... смотреть

АЛГЕБРА

, часть математики, развившаяся в связи с задачей о решении алгебраических уравнений. Слово "алгебра" - арабское (аль-джебр), означает один из приемов преобразования алгебраических уравнений. Решение уравнений 1-й и 2-й степеней известно еще с древности (2-е тысячелетие до нашей эры). В 16 в. итальянскими математиками найдены решения уравнений 3-й и 4-й степеней. К. Гауссом установлено (1799), что всякое алгебраическое уравнение n-й степени имеет n корней (решений), действительных или мнимых. В начале 19 в. Н. Абель и Э. Галуа доказали, что решения уравнений степени выше 4-й, вообще говоря, нельзя выразить через коэффициент уравнения при помощи алгебраических действий. В современной алгебре изучается общая теория совокупностей, в которых определены алгебраические операции, аналогичные по своим свойствам действиям над числами. Такие операции могут выполняться, например, над многочленами, векторами, матрицами и т.д.... смотреть

АЛГЕБРА

(араб.), часть математики, развившаяся в связи с задачей о решении алгебр. ур-нии. Решение ур-ний 1-й и 2-й степеней известно ещё с древности. В 16 в. ... смотреть

АЛГЕБРА

АЛГЕБРА (араб .), часть математики, развивающаяся в связи с задачей о решении алгебраических уравнений. Решение уравнений 1-й и 2-й степеней известно еще с древности. В 16 в. итальянскими математиками найдены решения уравнений 3-й и 4-й степеней. К. Гауссом установлено (1799), что всякое алгебраическое уравнение n-й степени имеет n корней (решений), действительных или мнимых. В нач. 19 в. Н. Абель и Э. Галуа доказали, что решения уравнений степени выше 4-й, вообще говоря, нельзя выразить через коэффициент уравнения при помощи алгебраических действий. В современной алгебре изучается общая теория совокупностей, в которых определены алгебраические операции, аналогичные по своим свойствам действиям над числами. Такие операции могут выполняться, напр., над многочленами, векторами, матрицами и т. д.<br><br><br>... смотреть

АЛГЕБРА

АЛГЕБРА (араб .), часть математики, развивающаяся в связи с задачей о решении алгебраических уравнений. Решение уравнений 1-й и 2-й степеней известно еще с древности. В 16 в. итальянскими математиками найдены решения уравнений 3-й и 4-й степеней. К. Гауссом установлено (1799), что всякое алгебраическое уравнение n-й степени имеет n корней (решений), действительных или мнимых. В нач. 19 в. Н. Абель и Э. Галуа доказали, что решения уравнений степени выше 4-й, вообще говоря, нельзя выразить через коэффициент уравнения при помощи алгебраических действий. В современной алгебре изучается общая теория совокупностей, в которых определены алгебраические операции, аналогичные по своим свойствам действиям над числами. Такие операции могут выполняться, напр., над многочленами, векторами, матрицами и т. д.<br><br><br>... смотреть

АЛГЕБРА

АЛГЕБРА (араб.) - часть математики, развивающаяся в связи с задачей о решении алгебраических уравнений. Решение уравнений 1-й и 2-й степеней известно еще с древности. В 16 в. итальянскими математиками найдены решения уравнений 3-й и 4-й степеней. К. Гауссом установлено (1799), что всякое алгебраическое уравнение n-й степени имеет n корней (решений), действительных или мнимых. В нач. 19 в. Н. Абель и Э. Галуа доказали, что решения уравнений степени выше 4-й, вообще говоря, нельзя выразить через коэффициент уравнения при помощи алгебраических действий. В современной алгебре изучается общая теория совокупностей, в которых определены алгебраические операции, аналогичные по своим свойствам действиям над числами. Такие операции могут выполняться, напр., над многочленами, векторами, матрицами и т. д.<br>... смотреть

АЛГЕБРА

- (араб.) - часть математики, развивающаяся в связи с задачей орешении алгебраических уравнений. Решение уравнений 1-й и 2-й степенейизвестно еще с древности. В 16 в. итальянскими математиками найденырешения уравнений 3-й и 4-й степеней. К. Гауссом установлено (1799), чтовсякое алгебраическое уравнение n-й степени имеет n корней (решений),действительных или мнимых. В нач. 19 в. Н. Абель и Э. Галуа доказали, чторешения уравнений степени выше 4-й, вообще говоря, нельзя выразить черезкоэффициент уравнения при помощи алгебраических действий. В современнойалгебре изучается общая теория совокупностей, в которых определеныалгебраические операции, аналогичные по своим свойствам действиям надчислами. Такие операции могут выполняться, напр., над многочленами,векторами, матрицами и т. д.... смотреть

АЛГЕБРА

- 1) Часть математики (см. Алгебра). В этом понимании термин "А." употребляется в таких сочетаниях, как гомологическая алгебра, коммутативная алге... смотреть

АЛГЕБРА

алгебраАрабское – al-gabr.Позднелатинское – algebra.Слово «алгебра» широко известно в русском языке уже с начала XVIII в.Изначально использовалось в фо... смотреть

АЛГЕБРА

-и, ж. 1) Розділ математики, що вивчає загальні закони дій над величинами, вираженими літерами, незалежно від їх числового значення. Вища алгебра. Мат... смотреть

АЛГЕБРА

1) Орфографическая запись слова: алгебра2) Ударение в слове: `алгебра3) Деление слова на слоги (перенос слова): алгебра4) Фонетическая транскрипция сло... смотреть

АЛГЕБРА

ж. algebra f - абстрактная алгебра- ассоциативная алгебра- булева алгебра- векторная алгебра- алгебра высказываний- высшая алгебра- дифференциальная а... смотреть

АЛГЕБРА

АЛГЕБРА, область МАТЕМАТИКИ, посвященная изучению уравнений, содержащих цифры и буквенные обозначения, которые представляют величины, подлежащие опреде... смотреть

АЛГЕБРА

▲ математическая наука ↑ относительно, математическая операция алгебра - наука о математических операциях.алгебраический.подстановка. подставить.диск... смотреть

АЛГЕБРА

Алгебра революции. Книжн., Публ. Революционное диалектическое учение. /em> Перифрастическое определение философии Гегеля. БМС 1998, 22; ШЗФ 2001, 14.По... смотреть

АЛГЕБРА

-и, ж. 1》 Розділ математики, що вивчає загальні закони дій над величинами, вираженими літерами, незалежно від їх числового значення. Вища алгебра. Мат... смотреть

АЛГЕБРА

матем. а́лґебра - алгебра алгоритмов - алгебра вычетов - алгебра множеств - алгебра отношений - алгебра подмножеств - алгебра подобия - алгебра представлений - алгебра трансформирований - внешняя алгебра - двойная алгебра - двухсторонняя алгебра - двусторонняя алгебра - знакопеременная алгебра - конечная алгебра - нормированная алгебра - первичная алгебра - полугрупповая алгебра - производная алгебра - частичная алгебра Синонимы: алмукабала, логистика, математика... смотреть

АЛГЕБРА

        (араб, algabr — улаживание). Термин «А.» впервые был использован в назв. одной из работ перс, математика аль-Хорезми, умершего в 850 н. э., для... смотреть

АЛГЕБРА

корень - АЛГЕБР; окончание - А; Основа слова: АЛГЕБРВычисленный способ образования слова: Бессуфиксальный или другой∩ - АЛГЕБР; ⏰ - А; Слово Алгебра со... смотреть

АЛГЕБРА

(от араб. аль-джебр - один из приёмов преобразования уравнений) - часть математики, развившаяся в связи с задачей о решении алгебраич. уравнений (осн. ... смотреть

АЛГЕБРА

Это такое привычное и знакомое для нас слово пришло в наш язык издалека – из арабского мира, где в Средние века процветали точные науки. Недаром и те цифры, которыми мы пользуемся, называются арабскими. Al-gabr по-арабски означает "восстановление разрозненных частей" (al – это арабский артикль, наподобие английского "the", немецкого "der" или французского "lа/lе").... смотреть

АЛГЕБРА

алгебра, -ры- алгебра бесконечная- алгебра векторная- алгебра Вирасоро- алгебра гензелева- алгебра групповая- алгебра Каца-Муди- алгебра кортежная- алг... смотреть

АЛГЕБРА

Заимств. в XVIII в. из польск. яз., в котором algiebra &LT; нем. Algebra, восходящего к ср.-лат. algebra, переоформлению араб. al gabr «восстановление ... смотреть

АЛГЕБРА

-ы, ж. Раздел математики, изучающий общие приемы действий над величинами, независимо от их числовых значений.[лат. algebra из араб.]Синонимы: алмукаб... смотреть

АЛГЕБРА

алгебра [< ар.] - часть математики, непосредственно примыкающая к арифметике, наука об общих операциях, аналогичных сложению и умножению, которые могут... смотреть

АЛГЕБРА

f.algebra; алгебра логики, Boolean algebra; алгебра Ли, Lie algebra; алгебра с делением, division algebraСинонимы: алмукабала, логистика, математика ... смотреть

АЛГЕБРА

АЛГЕБРА ж. наука счисления буквами и другими условными знаками, взамен цифр, которые вставляются только при окончательном выводе; буквосчисление, общая арифметика. Алгебраический, алгебрический, к сему способу относящийся. Алгебраист, алгебрист м. сведущий в науке этой. <br><br><br>... смотреть

АЛГЕБРА

алгебра אַלגֶבּרָה נ'* * *אלגברהСинонимы: алмукабала, логистика, математика

АЛГЕБРА

А́лгебра. Заимств. в XVIII в. из польск. яз., в котором algiebra < нем. Algebra, восходящего к ср.-лат. algebra, переоформлению араб. al gabr «восстано... смотреть

АЛГЕБРА

а́лгебра, а́лгебры, а́лгебры, а́лгебр, а́лгебре, а́лгебрам, а́лгебру, а́лгебры, а́лгеброй, а́лгеброю, а́лгебрами, а́лгебре, а́лгебрах (Источник: «Полная акцентуированная парадигма по А. А. Зализняку») . Синонимы: алмукабала, логистика, математика... смотреть

АЛГЕБРА

алгебра; ж. (араб., аль-джабр, аль-габр) розділ математики, в якому вивчають дії над величинами незалежно від їхніх числових значень. Основний зміст А. - методи розв'язування алгебричних рівнянь. Див. також: арифметика, геометрія, топологія, тригонометрія... смотреть

АЛГЕБРА

Один з найдавніших розділів математики, який спочатку розвивався як теорія розв'язку рівнянь (IX ст.); сучасна а. вивчає абстрактні множини (групи, кіл... смотреть

АЛГЕБРА

Rzeczownik алгебра f algebra f

АЛГЕБРА

Ударение в слове: `алгебраУдарение падает на букву: аБезударные гласные в слове: `алгебра

АЛГЕБРА

а́лгебра (від араб. аль-джабр, аль-габр) розділ математики, в якому вивчають дії над величинами незалежно від їхніх числових значень. Основний зміст А. – методи розв’язування алгебричних рівнянь.... смотреть

АЛГЕБРА

cebir* * *жcebirСинонимы: алмукабала, логистика, математика

АЛГЕБРА

алгебра, ′алгебра, -ы, ж. Раздел математики, изучающий такие качества величин, к-рые вытекают из отношений между величинами и не зависят от их природы.<br>прил. ~ический, -ая, -ое.<br><br><br>... смотреть

АЛГЕБРА

[ałhebra]ж.algebra мат.

АЛГЕБРА

АЛГЕБРА, -ы, ж. Раздел математики, изучающий такие качества величин, к-рые вытекают из отношений между величинами и не зависят от их природы. || прилагательное алгебраический, -ая,-ое.... смотреть

АЛГЕБРА

Геб Гера Герб Галера Гала Гаер Брег Брага Глеб Граб Ера Бра Берг Лаб Бер Белг Лаг Лера Раб Бег Бар Бал Реал Арба Реба Араб Алгебра Агар Ага Аба Рага Аргал Ареал Багер Бела Ларга Лара... смотреть

АЛГЕБРА

сущ. жен. рода, только ед. ч.алгебра

АЛГЕБРА

імен. жін. роду, тільки одн.алгебра

АЛГЕБРА

один з найдавніших розділів математики, який спочатку розвивався як теорія розв'язку рівнянь (IX ст.); сучасна а. вивчає абстрактні множини (групи, кільця, тіла).... смотреть

АЛГЕБРА

а́лгебра[алгеибра]-рие, д. і м. -р'і

АЛГЕБРА

жálgebra fСинонимы: алмукабала, логистика, математика

АЛГЕБРА

ж. algèbre f

АЛГЕБРА

'алгебра, -ыСинонимы: алмукабала, логистика, математика

АЛГЕБРА

ж.algèbre fСинонимы: алмукабала, логистика, математика

АЛГЕБРА

жAlgebra fСинонимы: алмукабала, логистика, математика

АЛГЕБРА

(1 ж)Синонимы: алмукабала, логистика, математика

АЛГЕБРА

а'лгебра, а'лгебры, а'лгебры, а'лгебр, а'лгебре, а'лгебрам, а'лгебру, а'лгебры, а'лгеброй, а'лгеброю, а'лгебрами, а'лгебре, а'лгебрах

АЛГЕБРА

bokstavregningСинонимы: алмукабала, логистика, математика

АЛГЕБРА

алгебра жалгебра

АЛГЕБРА

ж.álgebra f

АЛГЕБРА

algebraСинонимы: алмукабала, логистика, математика

АЛГЕБРА

代数学 dàishùxuéСинонимы: алмукабала, логистика, математика

АЛГЕБРА

сущ.жен.алгебра (математика пайӗ, вӑл тӗрлӗ хисепсене шутламалли мелсене тӗпчет); задачи по алгебре алгебра задачисем

АЛГЕБРА

АЛГЕБРА алгебры, мн. нет, ж. (от араб.). Отдел математики, часть математического анализа (см. анализ).

АЛГЕБРА

алгебра ж Algebra fСинонимы: алмукабала, логистика, математика

АЛГЕБРА

алгебраAlgebra {f}Синонимы: алмукабала, логистика, математика

АЛГЕБРА

алгебра а́лгебрас 1717 г. (см. Смирнов 34), из нем. Algebra (араб. происхождения).

АЛГЕБРА

فقط مفرد : علم جبر

АЛГЕБРА

Начальная форма - Алгебра, единственное число, женский род, именительный падеж, неодушевленное

АЛГЕБРА

ж. algebra Итальяно-русский словарь.2003. Синонимы: алмукабала, логистика, математика

АЛГЕБРА

алгебра ж

АЛГЕБРА

1. algebra

АЛГЕБРА

с 1717 г. (см. Смирнов 34), из нем. Algebra (араб. происхождения).

АЛГЕБРА

алгебра = ж. algebra; алгебраический algebraic(al).

АЛГЕБРА

【阴】 代数学, 代数

АЛГЕБРА

algèbre, calcul algébrique

АЛГЕБРА

А́лгебраaljebra (-)

АЛГЕБРА

рус. алгебра, алгебраический см. джебир, джебрий

АЛГЕБРА

алгебра; алгебраысь задача — задача по алгебре

АЛГЕБРА

Algebra, bokstavregning

АЛГЕБРА

Algebra, bogstavregning

АЛГЕБРА

АлгебраAlgebra, ae, f;

АЛГЕБРА

Алгебр, томъёоны ухаан

АЛГЕБРА

Математика уравнений с многочленами

АЛГЕБРА

алгебра `алгебра, -ы

АЛГЕБРА

а́лгебра іменник жіночого роду

АЛГЕБРА

{а́лгеибра} -рие, д. і м. -рі.

АЛГЕБРА

lat. algebraалгебра

АЛГЕБРА

алгебра алҷабр, алгебра, ҷабр

АЛГЕБРА

Cebir, algebra

АЛГЕБРА

ф.п. инф.в. мат. алгебра

АЛГЕБРА

algebra • eo: algebro

АЛГЕБРА

алгебра, жен.

АЛГЕБРА

алгебра ж η άλγεβρα

АЛГЕБРА

алгебраж ἡ ἀλγεβρα.

АЛГЕБРА

Ж мн. нет cəbr.

АЛГЕБРА

{N} հանրահաշիվ

АЛГЕБРА

ж. Algebra f.

АЛГЕБРА

ж. алгебра.

АЛГЕБРА

алгебра, -ры

АЛГЕБРА

algebra вчт.

АЛГЕБРА

• algebra

АЛГЕБРА

ж алгебра

АЛГЕБРА

алгебра.

АЛГЕБРА

алгебра.

АЛГЕБРА

алгебра

АЛГЕБРА

ალგებრა

АЛГЕБРА

алгебра

АЛГЕБРА

Алгебра

АЛГЕБРА

алгебра

АЛГЕБРА

Алгебра

T: 214