АБСТРАКЦИИ ПРИНЦИП

        логический принцип, лежащий в основе определений через абстракцию (См. Определение через абстракцию): любое Отношение типа равенства, определённое на некотором исходном множестве элементов, разбивает (делит, классифицирует) исходное множество на попарно непересекающиеся классы равных (в данном отношении) элементов. Указанные классы называются классами абстракции данного отношения, а множество этих классов — фактормножеством исходного множества по данному отношению. А. п. выражает, т. о., процесс абстракции (См. Абстракция): если выделен класс в каком-либо смысле равных предметов (класс абстракции, или класс эквивалентности (См.Эквивалентность)), то тем самым определён и «абстрактный» (произвольный) предмет этого класса, поскольку с точки зрения целей, определяющих данное отношение равенства, каждый «конкретный» предмет исходного множества понимается в качестве «абстрактного» предмета — носителя свойства, общего всем элементам данного класса абстракции. Посредством А. п. вводятся в качестве абстрактных объектов не только «представители» классов абстракции, получаемых при разбиении каким-либо отношением R исходного множества Z, но и сами эти классы. Например, если Z — множество всех прямых (плоскости или пространства), а R — отношение параллельности, то класс абстракции произвольной прямой a1 из Z по R — это класс всех прямых из Z, параллельных a1, класс абстракции a2 из Z по R — класс прямых, параллельных a2, и т. д. Но тем самым в качестве нового «объекта» вводится новое понятие направления. И именно так фактически формируются любые абстрактные понятия (См. Понятие). Например, понятие непрерывной функции есть один из классов абстракции, порождающихся разбиением множества всех (числовых) функций (См. Функция) отношением типа эквивалентности, связывающим все функции, удовлетворяющие определению непрерывности (и только такие функции). В этом типичном случае фактормножество состоит всего из двух элементов: «непрерывная (функция)» и «разрывная», и А. п. принимает здесь форму утверждения о допустимости рассматривать корректным образом класс непрерывных функций (или понятие непрерывности). Второй фигурирующий в этом примере класс абстракции (приводящий к формированию отрицательного понятия разрывности) является дополнением первого и явным образом не участвует в формулировке данного применения А. п. (впрочем, «отрицательность» второго понятия несущественна: при разбиениях чисел на чётные и нечётные, людей на мужчин и женщин, позвоночных на теплокровных и холоднокровных и т. п., оба вводимых понятия равноправны). Такая форма А. п. (которой часто присваивают наименование принципа свёртывания), утверждающая «существование» абстрактного класса (множества) всех объектов, удовлетворяющих произвольному разумным образом охарактеризованному свойству (предикату), играет основополагающую роль в теории множеств (о возникающих в связи с этим принципом проблемах, см. Аксиоматическая теория множеств и литературу к этой статье).
         М. М. Новосёлов.


Смотреть больше слов в «Большой Советской энциклопедии»

АБСТРАКЦИЯ →← АБСТРАКТНЫЙ ТРУД

Смотреть что такое АБСТРАКЦИИ ПРИНЦИП в других словарях:

АБСТРАКЦИИ ПРИНЦИП

логический (теоретико-множественный) принцип, лежащий в основе определений через абстракцию. Согласно П. а., любое отношение типа равенства, определенное на нек-ром множестве объектов, может служить для распределения (разбиения) объектов этого множества по попарно непересекающимся классам, наз. к л а с с а м и а б с т р а к ц и и (или классами разбиения, или классами эквивалентности) этого отношения, и таким, что любые два объекта разбиваемого множества принадлежат к одному и тому же классу абстракции в том (и только в том) случае, когда они находятся в указанном отношении; одновременно каждый элемент множества принадлежит к к.-л. классу абстракции (напр., множество всех живущих на земле людей отношением "х имеет одинаковый возраст с y" разбивается на непересекающиеся классы "живущих людей одинакового возраста"). В соответствии с т.н. аксиомой "существования классов" (аксиомой "свертывания"), позволяющей отождествлять классы и свойства (признаки), всякое, определенное для элементов разбиваемого множества, отношение типа равенства "выделяет" определенный вид признаков, характеризующих соответств. классы абстракции. Наоборот, всякое разбиение множества по известному виду признаков его элементов на классы абстракции (классы эквивалентных, или равных, по отношению к данному признаку элементов) "выделяет" нек-рое отношение типа равенства, а именно такое, в к-ром находятся любые два члена одного и того же класса абстракции. П. а. рассматривают обычно как одну из теорем об абстракции в классич. теории множеств, поскольку его формулировка сводится к утверждению о существовании множеств (классов), – абстрактных объектов, обладающих определ. свойствами. Однако посредством П. а. достигается и обратный процесс – избавление от абстракции, у д а л е н и е ее. Ведь, согласно осн. положению этой теории, класс абстракции может быть отождествлен со свойством, общим всем членам (предметам) данного класса. Но свойство это, в свою очередь, можно отождествить (и мы действительно на практике часто его отождествляем) с любым "конкретным" предметом (членом) этого класса (носителем свойства). Такое отождествление представляется даже более естественным, чем отождествление класса и свойства, в силу заведомо принимаемого, – по смыслу самого П. а., – quot;и н т е р в а л а а б с т р а к ц и и", согласно к-рому др. свойства этого предмета нас попросту не интересуют: они являются п о с т о р о н н и м и в данном анализе и п р а к т и ч е с к и их нет, если смотреть, так сказать, "изнутри" принятого интервала абстракции. Т.о., с т. зр. целей, определяющих выбор соответств. отношения типа равенства или соответств. свойства, каждый "конкретный" предмет, – элемент разбиваемого множества, при данном разбиении используется только в качестве "абстрактного" предмета, или, что то же – в качестве представителя (и заместителя) определенного (своего) класса абстракции. В этой своеобразной диалектике "абстрактного" и "конкретного", позволяющей вводить абстракции с одновременным указанием средств их удаления, состоит основное гносеологич. содержание П. а. Лит.: Кутюра Л., Филос. принципы математики, пер. с франц., СПБ, 1913, с. 45–46; Александров П. С., Введение в общую теорию множеств и функций, М.–Л., 1948, с. 22–25; Шиханович Ю. ?., Введение в совр. математику, М., 1965, гл. 6, § 3, 4; Ajdukiewiсz K., Logika pragmatyczna, Warsz., 1965, s. 237–40. M. Новоселов. Москва. ... смотреть

АБСТРАКЦИИ ПРИНЦИП

АБСТРАКЦИИ ПРИНЦИП         логич. принцип, лежащий в основе определений через абстракцию и связывающий три типа универсалий — классы, свойства и отн... смотреть

АБСТРАКЦИИ ПРИНЦИП

логич. принцип, лежащий в основе определений через абстракцию и связывающий три типа универсалий классы, свойства и отношения равенства (подобия). Согласно А. п., любое отношение равенства, определённое на нек-ром множестве, производит разбиение этого множества, т. е. делит, классифицирует его на попарно непересекающиеся и непустые части равных (в данном отношении) элементов. Указанные части наз. классами абстракции, а само разбиение (семейство этих классов) фактор множеством по данному отношению. Являясь обобщением традиц. понятия классификации на случай произвольных отождествлений в произвольных множествах, эта форма A.n. выражает двойной процесс абстракции: во-первых, введение абстрактных понятий (видов) как классов равных, т. е. в к.-л. смысле одинаковых объектов (классов абстракции), во-вторых, введение понятия об «абстрактном» (произвольном) объекте такого класса, поскольку с т. зр. целей, определяющих выбор данного отношения равенства, каждый «конкретный» объект исходного множества понимается в качестве «абстрактного» представителя (носителя) свойства, общего всем элементам соответств. класса абстракции. Отсюда проистекает нетривиальное следствие А. п.возможность заменять равенство в силу абстракции отождествления отношением тождества, когда принятым в этой абстракции свойством полностью исчерпывается информация об объектах исходного множества (т. е. когда свойство объекта и самый объект неразличимы). Это следствие используется, в частности, для получения стандартных универсумов s теории моделей. Известна и др. форма А. п. (её часто называют принципом свёртывания), утверждающая «существование» класса (множества) всех объектов, к-рые удовлетворяют произвольному свойству (предикату). А. п. в этой форме входит в число аксиом (теорем) абстрактной теории множеств. См. также Тождество, Экстенсиональность.... смотреть

T: 97