МОЛЕКУЛА

(новолат. molecula, уменьшительное от лат. moles — масса)
        наименьшая частица вещества, обладающая его химическими свойствами. М. состоит из атомов, точнее — из атомных ядер, окружающих их внутренних электронов и внешних валентных электронов, образующих химические связи (см. Валентность). Внутренние электроны атомов обычно не участвуют в образовании химических связей. Состав и строение молекул данного вещества не зависят от способа его получения. В случае одноатомных молекул (например, инертных газов) понятия М. и атома совпадают.
         Впервые понятие о М. было введено в химии в связи с необходимостью отличать М. как наименьшее количество вещества, вступающее в химические реакции, от атома как наименьшего количества данного элемента, входящего в состав М. (Международный конгресс в Карлсруэ, 1860). Основные закономерности строения М. были установлены в результате исследования химических реакций, анализа и синтеза химических соединений, а также благодаря применению ряда физических методов.
         Атомы объединяются в М. в большинстве случаев химическими связями. Как правило, такая связь создаётся одной, двумя или тремя парами электронов, которыми владеют сообща два атома. М. может содержать положительно и отрицательно заряженные атомы, т. е. ионы; в этом случае реализуются электростатические взаимодействия. Помимо указанных, в М. существуют и более слабые взаимодействия между атомами. Между валентно не связанными атомами действуют силы отталкивания.
         Состав М. выражают формулами химическими (См. Формулы химические). Эмпирическая формула (например, С2Н6О для этилового спирта) устанавливается на основании атомного соотношения содержащихся в веществе элементов, определяемого химическим анализом, и молекулярной массы (См.Молекулярная масса).
         Развитие учения о структуре молекул неразрывно связано с успехами прежде всего органической химии. Теория строения органических соединений, созданная в 60-х гг. 19 в. трудами А. М. Бутлерова, Ф. А. Кекуле, А. С. Купера и др., позволила представить строение молекул структурными формулами или формулами строения, выражающими последовательность валентных химических связей в М. При одной и той же эмпирической формуле могут существовать М. разного строения, обладающие различными свойствами (явление изомерии (См. Изомерия)). Таковы, например, этиловый спирт С5Н5ОН и диметиловый эфир (СН3)2О. Структурные формулы этих соединений разнятся:
        
         В некоторых случаях изомерные М. быстро превращаются одна в другую и между ними устанавливается динамическое равновесие (см. Таутомерия). В дальнейшем Я. Х. Вант-Гофф и независимо французский химик А. Ж. Ле Бель пришли к пониманию пространственного расположения атомов в молекуле и к объяснению явления стереоизомерии. А. Вернер (1893) распространил общие идеи теории строения на неорганические комплексные соединения. К началу 20 в. химия располагала подробной теорией строения М., исходящей из изучения только их химических свойств. Замечательно, что прямые физические методы исследования, развитые позднее, в подавляющем большинстве случаев полностью подтвердили структурные формулы химии, установленные путём исследования макроскопических количеств вещества, а не отдельных М.
         В физике понятие о М. оказалось необходимым для объяснения свойств газов, жидкостей и твёрдых тел. Прямое экспериментальное доказательство существования М. впервые было получено при изучении броуновского движения (французский физик Ж. Перрен, 1906).
         В твёрдом теле М. могут сохранять или не сохранять свою индивидуальность. Так, большинство М. органических соединений образует Молекулярные кристаллы, в узлах решёток которых находятся М., связанные одна с другой относительно слабыми силами межмолекулярного взаимодействия. Напротив, в ионных (например, в случае NaCI) и атомных (алмаз) кристаллах нет отдельных М. и весь кристалл подобен одной М. (см. Кристаллохимия). Структура М. может изменяться при переходе от кристалла к газу. Так, N2O5 в газе состоит из единых М., в кристалле — из ионов NO2+ и NO3- ; газообразный PCI5 — из М. с конфигурацией тригональной бипирамиды, твёрдый — из октаэдрического иона PCl6- и тетраэдрического иона PCl4+.
         Равновесные межъядерные расстояния r0 и энергии диссоциации D (при 25°С) некоторых двухатомных молекул
        ------------------------------------------------------------------------------------------------------------------------------------------------------
        | Молекула        | r0, Ǻ                 | D, кдж/моль (      | Молекула     r0, Ǻ              D,Кдж/моль    |
        |                       |                       ккал/моль)          |                     |                      | ккал/моль)        |
        |----------------------------------------------------------------------------------------------------------------------------------------------------|
        | H2                   | 0,74                | 426,5 (104,18)      | Br2               | 2,14              | 192,7 (46)          |
        |----------------------------------------------------------------------------------------------------------------------------------------------------|
        | Li2                   | 2,67                | 104,7 (25)            | I2                  | 2,67              | 147,1 (35,1)       |
        |----------------------------------------------------------------------------------------------------------------------------------------------------|
        | N2                   | 1,09                | 94,3 (22,5)           | LiH               | 1,59              | 243 (58)             |
        |----------------------------------------------------------------------------------------------------------------------------------------------------|
        | O2                   | 1,21                | 495,7 (118,3)       | NaH              | 1,89              | 196,9 (47)          |
        |----------------------------------------------------------------------------------------------------------------------------------------------------|
        | F2                   | 1,48                | 155 (37)               | HhF              | 0,92              | 565,6 (135)        |
        |----------------------------------------------------------------------------------------------------------------------------------------------------|
        | Na2                 | 3,08                | 78,5 (17,3)           | HCl               | 1,27              | 431,6 (103)        |
        |----------------------------------------------------------------------------------------------------------------------------------------------------|
        | Cl2                  | 1,99                | 242,6 (57,9)         | HI                 | 1,60              | 264 (63)             |
        ------------------------------------------------------------------------------------------------------------------------------------------------------
        
         Строение молекул. Геометрическая структура М. определяется равновесным расположением атомных ядер. Энергия взаимодействия атомов зависит от расстояния между ядрами. На очень больших расстояниях эта энергия равна нулю; если при сближении атомов образуется химическая связь, то атомы сильно притягиваются друг к другу (слабое притяжение наблюдается и без образования химической связи); при дальнейшем сближении атомов действуют электростатические силы отталкивания атомных ядер; препятствием к сильному сближению атомов является также невозможность совмещения их внутренних электронных оболочек. На рис. 1 показана зависимость потенциальной энергии двухатомной М. от межъядерного расстояния r. Эта энергия минимальна при равновесном расстоянии r0, стремится к нулю при r → ∞ и возрастает до ∞ при r → 0. Разность энергий при r = r0 и r → ∞ характеризует энергию связи, энергию диссоциации D. Равновесные расстояния r0 в двухатомных и многоатомных М. и, следовательно, расположение атомных ядер в М. определяются методами спектроскопии, рентгеновского структурного анализа (См. Рентгеновский структурный анализ) и электронографии (См. Электронография), а также нейтронографии (См. Нейтронография), позволяющими получить сведения и о распределении электронов (электронной плотности) в М. Рентгенографическое изучение молекулярных кристаллов даёт возможность установить геометрическое строение очень сложных М., вплоть до М. белков. Косвенную, но весьма детальную информацию о строении сложных М. получают различными спектроскопическими методами, в особенности с помощью спектров ядерного магнитного резонанса (См. Ядерный магнитный резонанс) (ЯМР). Геометрия простых М., содержащих малое число атомов, также эффективно исследуется методами спектроскопии. Расстояния (в Ǻ) между 2 данными валентно связанными атомами приблизительно постоянны в М. различных соединений, они уменьшаются с увеличением кратности связи:
        ----------------------------------------------------------------------------------------------------
        | C—C…………….     | 1,54         | C—F……………..    | 1,39          |
        |---------------------------------------------------------------------------------------------------|
        | C=C……………...    | 1,34         | C—Cl…………….    | 1,77          |
        |---------------------------------------------------------------------------------------------------|
        | C- - -C (в                 | 1,39         | C—Br…………….    | 1,92          |
        | бензоле)...              |                |                               |                 |
        |---------------------------------------------------------------------------------------------------|
        | C≡C……………...    | 1,2           | C—I………………    | 2,1            |
        |---------------------------------------------------------------------------------------------------|
        | C—H……………..    | 1,09         | C—S……………..    | 1,82          |
        |---------------------------------------------------------------------------------------------------|
        | C—O……………..    | 1,42         | O—H…………….     | 0,96          |
        |---------------------------------------------------------------------------------------------------|
        | C=O……………...    | 1,21         | N—H……………..    | 1,01          |
        |---------------------------------------------------------------------------------------------------|
        | C—N……………..    | 1,46         | S—H……………..    | 1,35          |
        ----------------------------------------------------------------------------------------------------
        
        Можно приписать каждому атому в данном валентном состоянии в М определённый атомный, или ковалентный, радиус (в случае ионной связи — ионный радиус, см. Атомные радиусы, Ионные радиусы), характеризующий размеры электронной оболочки атома (иона), образующего химическую связь в М. Представление о приблизительном постоянстве этих радиусов оказывается полезным при оценке межатомных расстояний и, следовательно, при расшифровке структуры М. Длина связи представляет собой сумму соответствующих атомных радиусов.
         Размер М. как целого, т. с. размер её электронной оболочки, есть величина до некоторой степени условная — имеется отличная от нуля, хотя и весьма малая, вероятность найти электроны М. и на большом расстоянии от её атомных ядер. Практически размеры М. определяются равновесным расстоянием, на которое они могут быть сближены при плотной упаковке М. в молекулярном кристалле и в жидкости. На больших расстояниях М. притягиваются одна к другой, на меньших — отталкиваются. Размеры М. поэтому можно найти с помощью рентгеноструктурного анализа молекулярных кристаллов, порядок величины этих размеров может быть определён из коэффициентов диффузии, теплопроводности и вязкости газов и из плотности вещества в конденсированном состоянии. Расстояние, на которое могут сблизиться валентно не связанные атомы, принадлежащие одной и той же М. или различным М., может быть охарактеризовано средними значениями т. н. ван-дер-ваальсовых радиусов (в Ǻ):
        --------------------------------------------------------------
        | H……...    | 1,0-1,2   | S………   | 1,9    |
        |------------------------------------------------------------|
        | C……...    | 1,75-2,0  | Se……..  | 1,0    |
        |------------------------------------------------------------|
        | N……...    | 1,5         | Te……..   | 2,2    |
        |------------------------------------------------------------|
        | P………   | 1,9         | F………    | 1,4    |
        |------------------------------------------------------------|
        | As……..   | 2,0         | Cl……...   | 1,8    |
        |------------------------------------------------------------|
        | Sb……..   | 2,2         | Br……...   | 2,0    |
        |------------------------------------------------------------|
        | O………   | 1,4         | I……….    | 2,2    |
        --------------------------------------------------------------
         Ван-дер-ваальсовы радиусы существенно превышают ковалентные. Зная величины ван-дер-ваальсовых, ковалентных, а также ионных радиусов, можно построить наглядные модели М., отражающие форму и размеры их электронных оболочек (рис. 2).
         Ковалентные химические связи в М. расположены под определёнными углами, зависящими от состояния гибридизации атомных орбиталей (см. Валентность). Так, для М. насыщенных органических соединений характерно тетраэдрическое расположение связей, образуемых атомом углерода; для М. с двойной связью (С=С) — плоское расположение связей атомов углерода; в М. соединений с тройной связью (С≡С) — линейное расположение связей:
        
         Таким образом, многоатомная М. обладает определённой конфигурацией в пространстве, т. е. определённой геометрией расположения связей, которая не может быть изменена без их разрыва. М. характеризуется той или иной симметрией расположения атомов. Если М. не имеет плоскости и центра симметрии, то она может существовать в двух конфигурациях, представляющих зеркальные отражения одна другой (зеркальные антиподы, или стереоизомеры, см. Изомерия). Все важнейшие биологически функциональные вещества в живой природе фигурируют в форме одного определённого стерсоизомера.
         М., содержащие единичные связи, или сигма-связи, могут существовать в различных Конформациях, возникающих при поворотах атомных групп вокруг единичных связей. Важные особенности макромолекул синтетических и биологических полимеров определяются именно их конформационными свойствами.
         Взаимодействие атомов в молекуле. Природа химических связей в М. оставалась загадочной вплоть до создания квантовой механики — классическая физика не могла объяснить насыщаемость и направленность валентных связей. Основы теории химической связи были созданы В. Гейтлером и немецким учёным Ф. Лондоном в 1927 на примере простейшей молекулы Н2. В дальнейшем теория и методы расчёта были значительно усовершенствованы, в частности на основе широкого применения Молекулярных орбиталей метода, и Квантовая химия позволяет вычислять межатомные расстояния, энергии М., энергии химических связей и распределение электронной плотности для сложных М.; при этом расчётные данные хорошо согласуются с экспериментальными.
         Химические связи в М. подавляющего числа органических соединений являются ковалентными. Напротив, в ряде неорганических соединений существуют ионные, а также донорно-акцепторные связи (см. Химическая связь), реализуемые в результате обобществления неподелённой пары электронов данного атома. Энергия образования М. из атомов во многих рядах сходных соединений приближённо аддитивна. Иными словами, в этих случаях можно считать, что энергия М. есть сумма энергии её связей, имеющих постоянные значения в рассматриваемом ряду. Отсюда следует практическая возможность приписать химическим связям приближённо автономные электронные оболочки.
         Аддитивность энергии М. выполняется не всегда. Яркий пример нарушения аддитивности представляют плоские М. органических соединений с т. н. сопряжёнными связями, т. е. с кратными связями, чередующимися с единичными. В этих случаях валентные электроны, определяющие кратность связей, т. н. π-электроны, становятся общими для всей системы сопряжённых связей, делокализованными. Такая делокализация электронов приводит к дополнительной стабилизации М. Например, энергия образования М. 1,3-бутадиена Н2С=CH—CH=CH2 больше ожидаемой по аддитивности на 16,8 кдж/моль (на 4 ккал/моль). Выравнивание электронной плотности вследствие обобществления π-электронов по связям выражается в удлинении двойных связей и укорочении единичных. В правильном шестиугольнике межуглеродных связей и бензола (см. формулу) все связи одинаковы и имеют длину, промежуточную между длиной единичной и двойной связи. Сопряжение связей ярко проявляется в молекулярных спектрах (см. ниже).
         Современная квантовомеханическая теория химической связи учитывает частичную делокализацию не только π-, но и σ-электронов, наблюдающуюся в любых молекулах. Вообще говоря, это не нарушает аддитивности энергий молекул.
         Современная квантовомеханическая теория химической связи учитывает частичную делокализацию не только π-, но и σ-электронов, наблюдающуюся в любых молекулах. Вообще говоря, это не нарушает аддитивности энергий молекул.
         В подавляющем большинстве случаев суммарный спин валентных электронов в М. равен нулю, т. е. спины электронов попарно насыщены. М., содержащие неспаренные электроны — Радикалы свободные (например, атомный водород Н·∙, метил CH∙·3), обычно неустойчивы, т. к. при их соединении друг с другом происходит значительное понижение энергии вследствие образования валентных связей. Наиболее эффективным методом изучения строения свободных радикалов является Электронный парамагнитный резонанс (ЭПР).
         Электрические и оптические свойства молекул. Поведение вещества в электрическом поле определяется основными электрическими характеристиками М. — постоянным дипольным моментом (См. Дипольный момент) и поляризуемостью. Дипольный момент означает несовпадение центров тяжести положительных и отрицательных зарядов в М., т. е. электрическую асимметрию М. Соответственно М., имеющие центр симметрии, например H2, лишены постоянного дипольного момента; напротив, в HCl электроны смещены к атому Cl и дипольный момент равен 1,03 D (1,03․10-18 ед. СГС). Поляризуемостью характеризуется способность электронной оболочки любой М. смещаться под действием электрического поля, в результате чего в М. создаётся индуцированный дипольный момент. Значения дипольного момента и поляризуемости находят экспериментально с помощью измерений диэлектрической проницаемости (См. Диэлектрическая проницаемость). В случае аддитивности свойств М. дипольный момент М. может быть представлен суммой дипольных моментов связей (с учётом их направления), то же относится к поляризуемости М.
         Оптические свойства вещества характеризуют его поведение в переменном электрическом поле световой волны — тем самым они определяются поляризуемостью М. вещества. С поляризуемостью непосредственно связаны преломление и рассеяние света, Оптическая активность и другие явления, изучаемые молекулярной оптикой (См. Молекулярная оптика)разделом физической оптики, посвященным изучению оптических свойств вещества.
         Магнитные свойства молекул. М. и макромолекулы подавляющего большинства химыических соединений диамагнитны (см. Диамагнетизм). Магнитная восприимчивость М. (χ) в ряде органических соединений может быть выражена как сумма значений χ для отдельных связей; однако аддитивность χ выполняется хуже, чем аддитивность поляризуемостей α. И χ, и α определяются свойствами внешних электронов М.; эти две величины связаны одна с другой.
         Парамагнитны М., обладающие постоянным магнитным моментом (см. Парамагнетизм). Таковы М. с нечётным числом электронов во внешней оболочке (например, NO и любые свободные радикалы), М., содержащие атомы с незамкнутыми (незаполненными) внутренними оболочками (переходные металлы и др.). Магнитная восприимчивость парамагнитных веществ зависит от температуры, т. к. тепловое движение препятствует ориентации магнитных моментов в магнитном поле. Строение парамагнитных М. эффективно изучается методом ЭПР.
         Атомные ядра элементов, у которых атомный номер или массовое число нечётны, обладают ядерным спиновым парамагнетизмом. Для таких ядер характерен ядерный магнитный резонанс (ЯМР), спектр которого зависит от электронного окружения ядер в М. Поэтому спектры ЯМР служат источником очень подробной информации о строении М., в том числе и весьма сложных, например белков (см. также Ядерный квадрупольный резонанс, Магнетизм, Магнетохимия).
         Спектры и строение молекул. Электрические, оптические, магнитные и другие свойства М. в конечном счёте связаны с волновыми функциями (См. Волновая функция) и энергиями различных состояний М.; через них выражаются и электрический дипольный момент, и магнитный момент, и поляризуемость, и магнитная восприимчивость. Прямую информацию о состояниях М. и вероятностях перехода между ними дают Молекулярные спектры.
         Частоты в спектрах, соответствующих вращательным переходам, зависят от моментов инерции М., определение которых из спектроскопических данных позволяет получить наиболее точные значения межатомных расстояний в М.
         Общее число линий или полос в колебательном спектре М. зависит от её симметрии. Частоты колебаний, наблюдаемые в спектрах, определяются, с одной стороны, массами атомов и их расположением, с другой — динамикой межатомных взаимодействий. Теория колебаний многоатомных М. соответственно опирается на теорию химического строения и классическую механику связанных колебаний. Исследование колебательных спектров позволяет сделать ряд выводов о строении М., о межатомных и межмолекулярных взаимодействиях, изучать явления таутомерии, поворотной изомерии.
         Электронные переходы в М. характеризуют структуру их электронных оболочек, состояние химических связей. Спектры М., обладающих большим числом сопряжённых связей, характеризуются длинноволновыми полосами поглощения, попадающими в видимую область. Вещества, построенные из таких М., обладают цветностью, к ним относятся все органические красители. Изучение электронно-колебательных спектров М. необходимо для понимания естественной и магнитной оптической активности.
         Молекулы в химии, физике и биологии. Понятие о М. — основное для химии, и большей частью сведений о строении и функциональности М. наука обязана химическим исследованиям. При химической реакции происходит превращение одних М. в другие. Для такого превращения обычно необходима некоторая избыточная энергия М. — энергия активации (см. Кинетика химическая). В акте химического взаимодействия М. проходят через конфигурацию т. н. активированного комплекса, или переходного состояния М. Характер и скорость химической реакции определяются этим состоянием, в свою очередь зависящим от строения взаимодействующих М. Химия решает две главные задачи, относящиеся к М., — устанавливает строение М. на основании химических реакций и, наоборот, на основе строения М. определяет ход реакций. Широкая совокупность важнейших проблем современной химии, в том числе и нерешённых, сводится к теории химической реакционной способности. Исследование этих проблем требует применения как теоретических методов квантовой химии, так и экспериментальных данных, получаемых химическими и физическими методами.
         Физические явления, определяемые строением и свойствами М., изучаются молекулярной физикой (См. Молекулярная физика). Термодинамические свойства любого вещества, построенного из М., в конечном счёте выражаются через значения энергий всех возможных состояний М., находимых из спектроскопических данных. Строение М. и межмолекулярные взаимодействия ответственны за равновесные свойства вещества. То же относится к неравновесным, кинетическим, свойствам. Установление равновесия требует некоторого времени — времени релаксации (См. Релаксация). При быстрых изменениях состояния вещества равновесие может не успеть установиться. Эти явления наблюдаются, например, при прохождении ультразвука через вещество и сказываются на поглощении и дисперсии звуковых волн (см. Молекулярная акустика). Равновесие устанавливается в результате взаимодействия М. при их соударениях в газе и жидкости, в результате поглощения и излучения света и т. д. Время релаксации М. в конденсированной среде существенно зависит от температуры, с ростом которой увеличивается подвижность М. В ряде случаев М. в жидкости практически утрачивают свою подвижность ещё до кристаллизации: происходит стеклование вещества. Подвижностью М. определяются способность веществ к диффузии (См. Диффузия), их Вязкость, Теплопроводность и т. д. Непосредственное изучение подвижности М., определение времён релаксации проводятся методами поглощения и дисперсии электромагнитных волн, ЯМР, ЭПР и другими способами.
         Равновесные и кинетические свойства больших цепных М., образующих полимеры (см. Макромолекула), специфичны. Особенности поведения макромолекул определяются прежде всего их гибкостью — способностью находиться в большом числе различных конформаций, возникающих в результате поворотов вокруг единичных связей.
         Развитие биологии, химии и молекулярной физики привело к построению молекулярной биологии (См. Молекулярная биология), исследующей основные явления жизни, исходя из строения и свойств биологически функциональных М. Организм существует на основе тонко сбалансированных химических и нехимических взаимодействий между М. Таким образом, изучение строения и свойств М. имеет фундаментальное значение для естествознания в целом.
        
         Лит.: Сыркин Я. К., Дяткина М. Е., Химическая связь и строение молекул, М. — Л., 1946; Паулинг Л., Природа химической связи, пер. с англ., М. — Л., 1947; Волькенштейн М. В., Строение и физические свойства молекул, М. — Л., 1955; его же, Молекулы и жизнь, М., 1965; его же, Перекрёстки науки, М., 1972; Кондратьев В. Н., Структура атомов и молекул, 2 изд., М., 1959; Козман У., Введение в квантовую химию, пер. с англ., М., 1960; Слэтер Дж., Электронная структура молекул, пер. с англ., М., 1965.
         М. В. Волькенштейн.
        
        Рис. 1. Зависимость потенциальной энергии U двухатомной молекулы (или отдельной химической связи) от межатомного расстояния r (r0 — равновесное расстояние, D — энергия диссоциации, 0, 1, 2, ... — уровни энергии колебаний).
        Рис. 2. Модели структур некоторых простых молекул (радиусы сфер — ван-дер-ваальсовы).
        Рис. 2. Модели структур некоторых простых молекул (радиусы сфер — ван-дер-ваальсовы).


Смотреть больше слов в «Большой Советской энциклопедии»

МОЛЕКУЛЯРНАЯ АКУСТИКА →← МОЛДОТАУ

Смотреть что такое МОЛЕКУЛА в других словарях:

МОЛЕКУЛА

• molekula

МОЛЕКУЛА

молекула

МОЛЕКУЛА

Rzeczownik молекула f Chemiczny molekuła f Chemiczny cząsteczka f

МОЛЕКУЛА

(1 ж); мн. моле/кулы, Р. моле/кулСинонимы: генонема, макромолекула, микрочастица, наномолекула, хромосома, эксимер, эписома

МОЛЕКУЛА

-ы, ж. Наименьшая частица вещества, обладающая всеми его химическими свойствами.[франц. molécule из лат.]Синонимы: генонема, макромолекула, микрочаст

МОЛЕКУЛА

{N} մոլեկւլ

МОЛЕКУЛА

Molekel, Molekül

МОЛЕКУЛА

(уменьшительная форма от лат. moles масса) наименьшая частица химического соединения; состоит из системы атомов, с помощью химических средств может рас

МОЛЕКУЛА

МОЛЕКУЛА (новолат. molecula - уменьшит. от лат. moles - масса), микрочастица, образованная из атомов и способная к самостоятельному существованию. Имее

МОЛЕКУЛА

Малек Мак Лука Ломка Лом Лок Лемка Лекало Лек Лал Мало Мао Мел Мелко Мелок Мка Лак Кума Кум Кома Ком Млеко Молекула Мука Мул Кола Кол Клеом Кале Мулла

МОЛЕКУЛА

molekylСинонимы: генонема, макромолекула, микрочастица, наномолекула, хромосома, эксимер, эписома

МОЛЕКУЛА

- (новолат. molecula - уменьшит. от лат. moles - масса),микрочастица, образованная из атомов и способная к самостоятельномусуществованию. Имеет постоян

МОЛЕКУЛА

физ. моле́кула - гетерополярная молекула - гетеротропная молекула - гомеополярная молекула - двухатомная молекула - дочерняя молекула - ионная м

МОЛЕКУЛА

жmolekülСинонимы: генонема, макромолекула, микрочастица, наномолекула, хромосома, эксимер, эписома

МОЛЕКУЛА

молекула эксимер, генонема, эписома, хромосома, микрочастица, макромолекула Словарь русских синонимов. молекула сущ., кол-во синонимов: 10 • биомо

МОЛЕКУЛА

молекула мол`екула, -ы

МОЛЕКУЛА

молекула

МОЛЕКУЛА

молекулаפּרוּדָה נ'; מוֹלֵקוּלָה נ'* * *מולקולהפרודהСинонимы: генонема, макромолекула, микрочастица, наномолекула, хромосома, эксимер, эписома

МОЛЕКУЛА

f.moleculeСинонимы: генонема, макромолекула, микрочастица, наномолекула, хромосома, эксимер, эписома

МОЛЕКУЛА

[франц. molecule от лат. moles — масса ] — наименьшая частица данного вещества, обладающая его основными хим. свойствами, способная к самостоятельному

МОЛЕКУЛА

Молекула- molecula;

МОЛЕКУЛА

молекула эксимер, генонема, эписома, хромосома, микрочастица, макромолекула

МОЛЕКУЛА

Молекула или частица — система или группа атомов; см. Вещество и др.; см. также Частица. Молекулярные, или частичные, силы и явления — см. также Частиц

МОЛЕКУЛА

Ударение в слове: мол`екулаУдарение падает на букву: еБезударные гласные в слове: мол`екула

МОЛЕКУЛА

молекула ж. Частица вещества, обладающая всеми его химическими свойствами.

МОЛЕКУЛА

(новолат. molecula, уменьшит. от лат. moles - масса), миним. частица в-ва, способная к самостоятельному существованию. Образована из атомов, имеет пост

МОЛЕКУЛА

молекула = ж. molecule; молекулярный molecular; молекулярный вес molecular weight.

МОЛЕКУЛА

моле́кула (франц. molecule, від лат. moles – шматок) найменша частинка речовини, що здатна існувати самостійно, зберігаючи основні хімічні властивост

МОЛЕКУЛА

МОЛЕКУЛА, наименьшая частица вещества, обладающая его основными химическими свойствами. Состоит из атомов, расположенных в пространстве в определенном

МОЛЕКУЛА

жMolekül nмолекула кислорода — Sauerstoffmolekül nСинонимы: генонема, макромолекула, микрочастица, наномолекула, хромосома, эксимер, эписома

МОЛЕКУЛА

cząsteczka;

МОЛЕКУЛА

сущ. жен. родамолекула

МОЛЕКУЛА

МОЛЕКУЛА, -ы, ж. Мельчайшая частица вещества, обладающая всеми его химическими свойствами. М. состоит из атомов. || прилагательное молекулярный, -ая, -

МОЛЕКУЛА

მოლეკულა

МОЛЕКУЛА

молекула.

МОЛЕКУЛА

корень - МОЛЕКУЛ; окончание - А; Основа слова: МОЛЕКУЛВычисленный способ образования слова: Бессуфиксальный или другой∩ - МОЛЕКУЛ; ⏰ - А; Слово Молекул

МОЛЕКУЛА

моле́кулаСинонимы: генонема, макромолекула, микрочастица, наномолекула, хромосома, эксимер, эписома

МОЛЕКУЛА

молекула

МОЛЕКУЛА

molecule, unit* * *моле́кула ж.moleculeмоле́кула возбужда́ется — a molecule is excited, molecule is activatedмоле́кула высвобожда́ет [отдаё́т] избы́то

МОЛЕКУЛА

molecule– гомеополярная молекула– двухатомная молекула– деформируемая молекула– дипольная молекула– ионная молекула– линейная молекула– метить молекула

МОЛЕКУЛА

Малекула

МОЛЕКУЛА

ж.molecule- адсорбированная молекула- активная молекула- амфифильная молекула- ангармоническая молекула- асимметричная молекула- биологическая молекула

МОЛЕКУЛА

分子 fēnzǐСинонимы: генонема, макромолекула, микрочастица, наномолекула, хромосома, эксимер, эписома

МОЛЕКУЛА

МОЛЕКУЛ, МОЛЕКУЛА(фр.). Самая малая частица какого-либо тела; по учению физиков - атом.Словарь иностранных слов, вошедших в состав русского языка.- Чуд

МОЛЕКУЛА

Заимств. в первой половине XIX в. из франц. яз., где molecule < н.-лат. molecula, суф. уменьшит.-ласкат. производного от moles «масса» < «усилие»

МОЛЕКУЛА

МОЛЕКУЛА ы, ж. molecule f. Мельчайшая частица вещества, обладающая всеми его химическим свойствами, способная существовать самостоятельно. БАС-1. Моле

МОЛЕКУЛА

малекула, -лы- молекула в возбуждённом состоянии- молекула в основном состоянии- молекула возбуждённая- молекула двухатомная- молекула диффундирующая-

МОЛЕКУЛА

МОЛЕКУЛА, -ы, ж. Мельчайшая частица вещества, обладающая всеми егохимическими свойствами. М. состоит из атомов. II прил. молекулярный, -ая,-ое.

МОЛЕКУЛА

молекула

МОЛЕКУЛА

моле́кула, моле́кулы, моле́кулы, моле́кул, моле́куле, моле́кулам, моле́кулу, моле́кулы, моле́кулой, моле́кулою, моле́кулами, моле́куле, мол

МОЛЕКУЛА

-и, ж. Найменша частинка речовини, здатна існувати самостійно, з усіма основними її хімічними властивостями.

МОЛЕКУЛА

МОЛЕКУЛА, -ы, ж.Маленький ребенок.Синонимы: генонема, макромолекула, микрочастица, наномолекула, хромосома, эксимер, эписома

МОЛЕКУЛА

молекула

МОЛЕКУЛА

МОЛЕКУЛА (новолат. molecula, уменьшит, от лат. moles - масса), наименьшая частица вещества, обладающая его хим. свойствами. М. состоит из атомов, точ

МОЛЕКУЛА

ж. физ.molécula f

МОЛЕКУЛА

молекула, молекулярный молекула чекиси хим. молекулярный вес

МОЛЕКУЛА

МОЛЕКУЛА молекулы, ж. (от латин. moles - масса) (ест.). Мельчайшая частица вещества, способная существовать самостоятельно и обладающая всеми свойствам

МОЛЕКУЛА

(новолат. molecula, уменьшит. от лат. moles-масса), микрочастица, образованная из двух или большего числа атомов и способная к самостоят. существо

МОЛЕКУЛА

малекула, -лы

МОЛЕКУЛА

молекула.

МОЛЕКУЛА

ж. молекула (заттын эң майда бөлүгү).

МОЛЕКУЛА

молекул||аж τό μόριο{ν}.

МОЛЕКУЛА

молекула

МОЛЕКУЛА

сущ.жен.молекула (япалан темиҫе атомран таракан пӗчӗк пайӗ); молекула кислорода кислород молекулй

МОЛЕКУЛА

Ж molekul (maddənin bütün kimyəvi xassələrini özündə saxlayan ən kiçik hissəcik).

МОЛЕКУЛА

Молекул

МОЛЕКУЛА

моле́кула іменник жіночого роду

МОЛЕКУЛА

імен. жін. родумолекула

МОЛЕКУЛА

уменьшит. лат. масса) —  минимальная частица вещества, способная к самостоятельному существованию. Молекула образована из атомов, имеет постоянный сост

МОЛЕКУЛА

моле'кула, моле'кулы, моле'кулы, моле'кул, моле'куле, моле'кулам, моле'кулу, моле'кулы, моле'кулой, моле'кулою, моле'кулами, моле'куле, моле'кулах

МОЛЕКУЛА

МОЛЕКУЛА (новолат . molecula, уменьшит. от лат. moles - масса), микрочастица, образованная из атомов и способная к самостоятельному существованию. Имее

МОЛЕКУЛА

Начальная форма - Молекула, единственное число, женский род, именительный падеж, неодушевленное

МОЛЕКУЛА

1) Орфографическая запись слова: молекула2) Ударение в слове: мол`екула3) Деление слова на слоги (перенос слова): молекула4) Фонетическая транскрипция

МОЛЕКУЛА

молекула [< лат. moles масса, с уменыд. суффиксом -cula] - наименьшая частица вещества, обладающая его хим. свойствами; м. состоит из атомов, число кот

МОЛЕКУЛА

-и ż molekuła

МОЛЕКУЛА

молекулаMolekülСинонимы: генонема, макромолекула, микрочастица, наномолекула, хромосома, эксимер, эписома

МОЛЕКУЛА

molekulaСинонимы: генонема, макромолекула, микрочастица, наномолекула, хромосома, эксимер, эписома

МОЛЕКУЛА

МОЛЕКУЛА (уменьшительная форма от лат. moles – масса)наименьшая частица химического соединения; состоит из системы атомов, с помощью химических сре

МОЛЕКУЛА

или частица — система или группа атомов; см. Вещество и др.; см. также Частица. Молекулярные, или частичные, силы и явления — см. также Частица, Сродст

МОЛЕКУЛА

Настоящее имя: Крылов А.Примечание: Беллетристика (Масанов)Источники:• Масанов И.Ф. Словарь псевдонимов русских писателей, ученых и общественных деятел

МОЛЕКУЛА

ж.molécule fСинонимы: генонема, макромолекула, микрочастица, наномолекула, хромосома, эксимер, эписома

МОЛЕКУЛА

ж. molecule— молекула воспаления - молекула гистосовместимости - иммунная молекула - иммуногенная молекула - иммуноглобулиновая молекула - рецепторная

МОЛЕКУЛА

мол'екула, -ыСинонимы: генонема, макромолекула, микрочастица, наномолекула, хромосома, эксимер, эписома

МОЛЕКУЛА

физ. малекула, жен.

МОЛЕКУЛА

ж. molecola Итальяно-русский словарь.2003. Синонимы: генонема, макромолекула, микрочастица, наномолекула, хромосома, эксимер, эписома

МОЛЕКУЛА

Моле́кулаkichembelele (vi-), molekiule (-)

МОЛЕКУЛА

ж физ molécula fСинонимы: генонема, макромолекула, микрочастица, наномолекула, хромосома, эксимер, эписома

МОЛЕКУЛА

молекула ж.molecule

МОЛЕКУЛА

молекула; ж. (фр., від лат., шматок) найменша частинка речовини, що здатна існувати самостійно, зберігаючи основні хімічні властивості цієї речовини.

МОЛЕКУЛА

молекула молекула

МОЛЕКУЛА

ж. Molekül n.

МОЛЕКУЛА

ж. molecola f - асимметричная молекула- атомная молекула- возбуждённая молекула- гигантская молекула- гомеополярная молекула- гомоатомная молекула- дв

МОЛЕКУЛА

▲ образование (составное) ↑ атом молекула - образование, состоящее из одинаковых или различных атомов, способноек длительному существованию в виде ин

МОЛЕКУЛА

مولكول

МОЛЕКУЛА

{моле́кула} -лие, д. і м. -лі.

МОЛЕКУЛА

-и, ж. Найменша частинка речовини, здатна існувати самостійно, з усіма основними її хімічними властивостями.

МОЛЕКУЛА

молекула— moleculeСинонимы: генонема, макромолекула, микрочастица, наномолекула, хромосома, эксимер, эписома

МОЛЕКУЛА

(новолат. molecula, уменьшит. от лат. moles - масса) - наименьшая частица данного в-ва, обладающая его хим. св-вами и состоящая из одинаковых (в просто

МОЛЕКУЛА

МОЛЕКУЛА, мельчайшая частица вещества (например, химического соединения), определяющая химические свойства этого вещества. Молекула может состоять из о

МОЛЕКУЛА

[molecule] — наименьшая частица вещества, обладающая его химическими свойствами. Молекула состоит из атомов, точнее из атомных ядер, окружающих их внут

МОЛЕКУЛА

ж. molécule f

МОЛЕКУЛА

молекула, мол′екула, -ы, ж. Мельчайшая частица вещества, обладающая всеми его химическими свойствами. М. состоит из атомов.прил. молекулярный, -ая, -ое

МОЛЕКУЛА

(новолат. molecule, уменьшит. от лат. moles — масса), наименьшая ч-ца в-ва, обладающая его осн. хим. св-вами и состоящая из атомов, соединённых

МОЛЕКУЛА

молекула— moleculeСинонимы: генонема, макромолекула, микрочастица, наномолекула, хромосома, эксимер, эписома

МОЛЕКУЛА

(уменьшительное от лат. moles — масса) — наименьшая частица вещества, определяющая его свойства и способная к самостоятельному существованию; нейтральн

МОЛЕКУЛА

{molek'y:l}1. molekyl

МОЛЕКУЛА

ж.molecule

МОЛЕКУЛА

физ. молекула

МОЛЕКУЛА В ВОЗБУЖДЁННОМ СОСТОЯНИИ

малекула ва ўзбуджаным стане

МОЛЕКУЛА В ВОЗБУЖДЁННОМ СОСТОЯНИИ

малекула ва ўзбуджаным стане

МОЛЕКУЛА ВОЗБУЖДЁННАЯ

малекула ўзбуджаная

МОЛЕКУЛА ВОЗБУЖДЁННАЯ

малекула ўзбуджаная

МОЛЕКУЛА В ОСНОВНОМ СОСТОЯНИИ

малекула ў асноўным стане

МОЛЕКУЛА В ОСНОВНОМ СОСТОЯНИИ

малекула ў асноўным стане

МОЛЕКУЛА ГАЗА

molécule gazeuse

МОЛЕКУЛА ДВУХАТОМНАЯ

малекула двухатамная

МОЛЕКУЛА ДВУХАТОМНАЯ

малекула двухатамная

МОЛЕКУЛА ДИФФУНДИРУЮЩАЯ

малекула дыфундзіруючая

МОЛЕКУЛА ДИФФУНДИРУЮЩАЯ

малекула дыфундзіруючая

МОЛЕКУЛА ИСХОДНАЯ

малекула зыходная

МОЛЕКУЛА ИСХОДНАЯ

малекула зыходная

МОЛЕКУЛА МИНЕРАЛЬНАЯ

— изл. син. термина нормативный минерал.Геологический словарь: в 2-х томах. — М.: Недра.Под редакцией К. Н. Паффенгольца и др..1978.

МОЛЕКУЛА МНОГОАТОМНАЯ

малекула шмататамная

МОЛЕКУЛА МНОГОАТОМНАЯ

малекула шмататамная

МОЛЕКУЛА (НОВОЛАТ . MOLECULA

МОЛЕКУЛА (новолат . molecula, уменьшит. от лат. moles - масса), микрочастица, образованная из атомов и способная к самостоятельному существованию. Имее

МОЛЕКУЛА (НОВОЛАТ. MOLECULA, УМЕНЬШИТ. ОТ ЛАТ. MOLES МАССА)

МОЛЕКУЛА (новолат. molecula, уменьшит. от лат. moles - масса), микрочастица, образованная из атомов и способная к самостоятельному существованию. Имеет

МОЛЕКУЛА НОРМАТИВНАЯ МИНЕРАЛЬНАЯ

— изл. син. термина нормативный минерал.Геологический словарь: в 2-х томах. — М.: Недра.Под редакцией К. Н. Паффенгольца и др..1978.

МОЛЕКУЛА РАЗЛЕТНАЯ

&LT;phys.&GT; dissociable molecule

МОЛЕКУЛА РОДСТВЕННАЯ

молекула родственная— molecule related (to TGF)

МОЛЕКУЛА РОДСТВЕННАЯ

молекула родственная— molecule related (to TGF)

МОЛЕКУЛА СВОБОДНАЯ

малекула свабодная

МОЛЕКУЛА СВОБОДНАЯ

малекула свабодная

МОЛЕКУЛА СЛОЖНАЯ

малекула складаная

МОЛЕКУЛА СЛОЖНАЯ

малекула складаная

МОЛЕКУЛА ТИПА АСИММЕТРИЧНОГО ВОЛЧКА

малекула тыпу асіметрычнага ваўчка

МОЛЕКУЛА ТИПА АСИММЕТРИЧНОГО ВОЛЧКА

малекула тыпу асіметрычнага ваўчка

МОЛЕКУЛА ТРИПЛЕТНАЯ

малекула трыплетная

МОЛЕКУЛА ТРИПЛЕТНАЯ

малекула трыплетная

T: 384 M: 12 D: 3