ФЕРРИТЫ

        химические соединения окиси железа Fe2O3 с окислами других металлов. У многих Ф. сочетаются высокая намагниченность и полупроводниковые или диэлектрические свойства, благодаря чему они получили широкое применение как Магнитные материалы в радиотехнике, радиоэлектронике, вычислительной технике.
         В состав Ф. входят Анионы кислорода O2-, образующие остов их кристаллической решётки; в промежутках между ионами кислорода располагаются Катионы Fe3+, имеющие меньший радиус, чем анионы O2-, и катионы Mek+ металлов, которые могут иметь радиусы различной величины и разные валентности k. Существующее между катионами и анионами кулоновское (электростатическое) взаимодействие приводит к формированию определённой кристаллической решётки и к определённому расположению в ней катионов. В результате упорядоченного расположения катионов Fe3+ и Mek+ Ф. обладают Ферримагнетизмом и для них характерны достаточно высокие значения намагниченности и точек Кюри. Различают Ф.-шпинели, Ф.-гранаты, ортоферриты и гекса ферриты.
         Ферриты-шпинел и имеют структуру минерала Шпинели с общей формулой MeFe2O4, где Me – Ni2+, Co2+, Fe2+, Mn2+, Mg2+, Li1+, Cu2+. Элементарная ячейка Ф.-шпинели представляет собой куб, образуемый 8 молекулами MeOFe2O3 и состоящий из 32 анионов O2-, между которыми имеется 64 тетраэдрических (А) и 32 октаэдрических (В) промежутков, частично заселённых катионами Fe3+ и Me2+ (рис.1). В зависимости от того, какие ионы и в каком порядке занимают промежутки А и В, различают прямые шпинели (немагнитные) и обращенные шпинели (ферримагнитные). В обращенных шпинелях половина ионов Fe3+ находится в тетраэдрических промежутках, а в октаэдрических промежутках – 2-я половина ионов Fe3+ и ионы Me2+. При этом намагниченность MA октаэдрической подрешётки больше тетраэдрической MB, что приводит к возникновению ферримагнетизма.
         Ферриты-гранаты редкоземельных элементов R3+ (Gd3+, Tb3+, Dy3+, Ho3+, Er3+, Sm3+, Eu3+) и иттрия Y3+ имеют кубическую структуру граната с общей формулой R3Fe5O12. Элементарная ячейка Ф.-гранатов содержит 8 молекул R3Fe5O12; в неё входит 96 ионов O2-, 24 иона R3+ и 40 ионов Fe3+. В Ф.-гранатах имеется три типа промежутков, в которых размещаются катионы: большая часть ионов Fe3+ занимает тетраэдрические (d), меньшая часть ионов Fe3+ – октаэдрические (я) и ионы R3+ додекаэдрические места (с). Соотношение величин и направлений намагниченностей катионов, занимающих промежутки d, а, с, показано на рис. 2.
         Ортоферритами называют группу Ф. с орторомбической кристаллической структурой. Их образуют редкоземельные элементы или иттрий по общей формуле RFeO3-. Ортоферриты изоморфны минералу Перовскиту (см. Изоморфизм). По сравнению с Ф.-гранатами они имеют небольшую намагниченность, т.к. обладают неколлинеарным антиферромагнетизмом (слабым ферромагнетизмом (См. Слабый ферромагнетизм)) и только при очень низких температурах (порядка нескольких К и ниже) – ферримагнетизмом.
         Ферриты гексагональной структуры (гексаферриты) имеют общую формулу MeO (Fe2O3), где Me – ионы Ba, Sr или Pb. Элементарная ячейка кристаллической решётки гексаферритов состоит из 38 анионов O2-, 24 катионов Fe3+ и 2 катионов Me2+ (Ba2+, Sr2+ или Pb2+). Ячейка построена из двух шпинельных блоков, разделённых между собой ионами Pb2+ (Ba2+ или Sr2+), O2- и Fe3+. Если окиси железа и бария спекать совместно с соответствующими количествами следующих металлов: Mn, Cr, Со, Ni, Zn, то можно получить ряд новых оксидных ферримагнетиков.
         Некоторые гексаферриты обладают высокой коэрцитивной силой (См. Коэрцитивная сила) и применяются для изготовления постоянных магнитов. Большинство Ф. со структурой шпинели, феррит-гранат иттрия и некоторые гексаферриты используются как Магнитно-мягкие материалы.
         При введении примесей и создании нестехеометричности состава (переменности состава как по катионам, так и по кислороду) электрическое сопротивление Ф. изменяется в широких пределах. Ф. в полупроводниковой технике не применяются из-за низкой подвижности носителей тока. Синтез поликристаллических Ф. осуществляется по технологии изготовления керамики (См. Керамика). Из смеси исходных окислов прессуют изделия нужной формы, которые подвергают затем спеканию при температурах от 900 °С до 1500 °С на воздухе или в специальных газовых средах.
         Монокристаллические Ф. выращиваются методами Чохральского, Вернейля и др. (см. Монокристалл).
        
         Лит.: Рабкин Л. И., Соскин С. А., Эпштейн Б. Ш., Ферриты. Строение, свойства, технология производства, Л., 1968; Смит Я., Вейн Х. Ферриты, пер. с англ., М., 1962; Гуревич А. Г., Магнитный резонанс в ферритах и антиферромагнетиках, М., 1973.
         К. П. Белов.
        ФЕРРИТЫ фото №1
        Рис. 1. Кристаллическая структура ферритов-шпинелей: а — схематическое изображение элементарной ячейки шпинельной структуры (ее удобно делить на 8 равных частей — октантов); б — расположение ионов в смежных октантах ячейки (заштрихованном и белом), белые кружки — ионы О2-, чёрные — ионы металла в октаэдрических и тетраэдрических промежутках; в — ион металла в тетраэдрическом промежутке; г — ион металла в октаэдрическом промежутке.
        ФЕРРИТЫ фото №2
        Рис. 2. Схематическое изображение величин и направлений векторов намагниченности катионов, образующих магнитные подрешётки d, а и c в ферритах-гранатах.

Смотреть больше слов в «Большой Советской энциклопедии»

ФЕРРО (ОСТРОВ) →← ФЕРРИТТРАНЗИСТОРНАЯ ЯЧЕЙКА

Смотреть что такое ФЕРРИТЫ в других словарях:

ФЕРРИТЫ

ФЕРРИТЫ, химич. соединения окиси железа Fe2O3 с окислами других металлов. У многих Ф. сочетаются высокая намагниченность и полупроводниковые или диэл... смотреть

ФЕРРИТЫ

(от лат. ferrum — железо), в прямом смысле — хим. соединения окиси железа Fe2O3 с окислами др. металлов; в более широком понимании — сложные ок... смотреть

ФЕРРИТЫ

сложные оксиды железа(Ш) с более основными оксидами др. металлов. Иногда Ф. наз. вообще все ферримагнетики независимо от их хим. природы. Практиче... смотреть

ФЕРРИТЫ

[ferrites] — химическое соединение Fe2O3 с оксидами других металлов, полученных чаще всего переокислением Fe-содержащих оксидных расплавов. К ферритам ... смотреть

ФЕРРИТЫ

неметаллич. твёрдые магнитные материалы, по хим. составу - соединения оксида железа Fe2O3 с оксидами др. металлов; делятся на Ф.-шпинели MFe2O4 (М - ни... смотреть

ФЕРРИТЫ

ФЕРРИТЫ, неметаллические твердые магнитные материалы (ферримагнетики) - химические соединения оксидов главным образом переходных металлов с оксидом железа. Применяют ферриты со структурой шпинели (т. н. феррошпинели) и со структурой граната (феррогранаты), а также гексаферриты и ортоферриты. Изделия из ферритов обычно изготовляют спеканием. Ферриты обладают низкой электропроводностью (отличаются малыми потерями на вихревые токи) и высокой намагниченностью. Применяются в устройствах радиотехники, техники связи, электроники, вычислительной техники.<br><br><br>... смотреть

ФЕРРИТЫ

ФЕРРИТЫ - неметаллические твердые магнитные материалы (ферримагнетики) - химические соединения оксидов главным образом переходных металлов с оксидом железа. Применяют ферриты со структурой шпинели (т. н. феррошпинели) и со структурой граната (феррогранаты), а также гексаферриты и ортоферриты. Изделия из ферритов обычно изготовляют спеканием. Ферриты обладают низкой электропроводностью (отличаются малыми потерями на вихревые токи) и высокой намагниченностью. Применяются в устройствах радиотехники, техники связи, электроники, вычислительной техники.<br>... смотреть

ФЕРРИТЫ

ФЕРРИТЫ , неметаллические твердые магнитные материалы (ферримагнетики) - химические соединения оксидов главным образом переходных металлов с оксидом железа. Применяют ферриты со структурой шпинели (т. н. феррошпинели) и со структурой граната (феррогранаты), а также гексаферриты и ортоферриты. Изделия из ферритов обычно изготовляют спеканием. Ферриты обладают низкой электропроводностью (отличаются малыми потерями на вихревые токи) и высокой намагниченностью. Применяются в устройствах радиотехники, техники связи, электроники, вычислительной техники.... смотреть

ФЕРРИТЫ

ФЕРРИТЫ, неметаллические твердые магнитные материалы (ферримагнетики) - химические соединения оксидов главным образом переходных металлов с оксидом железа. Применяют ферриты со структурой шпинели (т. н. феррошпинели) и со структурой граната (феррогранаты), а также гексаферриты и ортоферриты. Изделия из ферритов обычно изготовляют спеканием. Ферриты обладают низкой электропроводностью (отличаются малыми потерями на вихревые токи) и высокой намагниченностью. Применяются в устройствах радиотехники, техники связи, электроники, вычислительной техники.... смотреть

ФЕРРИТЫ

- неметаллические твердые магнитные материалы (ферримагнетики) -химические соединения оксидов главным образом переходных металлов соксидом железа. Применяют ферриты со структурой шпинели (т. н.феррошпинели) и со структурой граната (феррогранаты), а также гексаферритыи ортоферриты. Изделия из ферритов обычно изготовляют спеканием. Ферритыобладают низкой электропроводностью (отличаются малыми потерями навихревые токи) и высокой намагниченностью. Применяются в устройствахрадиотехники, техники связи, электроники, вычислительной техники.... смотреть

ФЕРРИТЫ

неметаллич. тв. магн. материалы (ферримагиетики) - хим. соединения оксидов гл. обр. переходных металлов с оксидом железа. Применяют Ф. со структурой шп... смотреть

ФЕРРИТЫ

корень - ФЕРР; суффикс - ИТ; окончание - Ы; Основа слова: ФЕРРИТВычисленный способ образования слова: Суффиксальный∩ - ФЕРР; ∧ - ИТ; ⏰ - Ы; Слово Ферри... смотреть

ФЕРРИТЫ

ферриты ферритҳо

T: 154